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Abstract

The popular Boston mechanism in school choice satisfies two main desirable

axioms, Pareto efficiency and respect for (preference) rank. However, when pri-

orities are weak, the Boston mechanism with random tie-breaking no longer has

these properties ex-ante. In the context where all agents have equal priorities

and preferences are weak, we propose a new random mechanism, the probabilis-

tic Boston mechanism, to restore the two desiderata. The mechanism combines

features from both the Boston mechanism and the probabilistic serial rule, and sat-

isfies stochastic-dominance efficiency, (ex-ante) respect for rank, as well as a new

fairness notion of equal-rank ordinal fairness that is stronger than equal treatment

of equals.
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1 Introduction

The Boston mechanism is still one of the most common and popular centralized mecha-

nisms in placing students to schools around the world, although the school choice liter-

ature starting from Abdulkadiroğlu and Sönmez (2003) has largely supported the use of

alternative and superior solutions.1 In particular, the deferred acceptance algorithm (DA)
∗Both Han and Yang are affiliated with the School of Economics, Shanghai University of Finance and

Economics. Emails: han.xiang@sufe.edu.cn (Han), shanhuiyangsufe@163.com (Yang).
1For instance, the Boston mechanism is still used in Belgium, Germany, Spain, and Cambridge and

Seattle in the US (Terrier et al., 2021). Moreover, a hybrid of the Boston mechanism and the deferred
acceptance algorithm is adopted in Chinese college admissions (Chen and Kesten, 2017).
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from Gale and Shapley (1962), which has replaced it in many regions, is strategy-proof

and agent-optimal stable, while the Boston mechanism is manipulable and unstable.

Such drawbacks of the Boston mechanism are attributed to the immediate-acceptance

nature in its allocation procedure: at each step k a school only admits students who list

it as the kth choice, and it does not reject any previously accepted student even if there

are currently applicants with higher priorities.

However, such procedure also indicates that the outcome is Pareto efficient, while

DA is only constrained efficient. Moreover, as revealed by earlier axiomatic character-

izations (Kojima and Ünver, 2014, Doğan and Klaus, 2018), a fundamental feature of

the procedure is that it respects preference ranks, i.e., if a student envies the assignment

of another student, then the latter must rank her assigned school weakly higher in her

preference list. Therefore, from an axiomatic perspective, the popularity of the Boston

mechanism mainly comes from this welfare criterion, in addition to Pareto efficiency.2

In the presence of ties in priorities, which are often observed in real-life school

choice problems, random allocations are needed due to fairness considerations regard-

ing equal claims. Then a natural and common solution is to pick an ordering of the

agents from the uniform distribution to break the ties in priorities, and then apply the

Boston mechanism. Although such randomized Boston mechanism satisfies the mini-

mum fairness requirement of equal treatment of equals, as shown in Chen et al. (2023),

it does not have the two attractive properties of the original Boston mechanism ex-ante:

it is not stochastic-dominance (sd) efficient, and does not satisfy respect for rank, which

requires that if student i is admitted to school a with positive probability and student

j is admitted to a worse school with positive probability, i.e., j envies the probability

share of a received by i, then i must rank a weakly higher than j.3

In this study, we propose the probabilistic Boston mechanism (PB) that restores the

above two desiderata, in the simplified house allocation setup (Hylland and Zeckhauser,

1979), where all agents (students) have equal priority for each indivisible object (school).

In addition, we allow indifferences in preferences. As far as we know, even the original

deterministic Boston mechanism has not been extended to the general weak preference

2There is also abundant empirical evidence which suggests that the overall welfare can be higher
under the Boston mechanism than under DA. See, for example, He (2017), Agarwal and Somaini (2018)
and Calsamiglia et al. (2020).

3More generally, randomizations over deterministic mechanisms often fail to satisfy desirable ex-
ante properties. Some previous similar examples include the random serial dictatorship, which is not
stochastic-dominance efficient or envy-free (Bogomolnaia and Moulin, 2001), and DA with random tie-
breaking, which is not ex-ante stable, and induces ex-ante discriminations (Kesten and Ünver, 2015).
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domain. Decomposing the random allocations selected by PB also gives a deterministic

mechanism that satisfies efficiency and respect for rank under weak preferences.

Similar to the original Boston mechanism, PB focuses on the allocation of agents’ kth

choices at each step k. Within a step, the allocation of probability shares of objects to

agents follows a consumption procedure as in the prominent probabilistic serial rule (PS)

that is introduced by Bogomolnaia and Moulin (2001) and extended to accommodate

weak preferences by Katta and Sethuraman (2006). A defining feature of (extended) PS

is ordinal fairness (Hashimoto et al., 2014, Heo and Yılmaz, 2015), which requires the

allocation of each object to try to equalize any two agents’ probabilities of receiving a

weakly better object. We define equal-rank ordinal fairness by imposing the requirement

only when the two agents rank the object equally. PB satisfies this new fairness axiom

(which is stronger than equal treatment of equals), as well as sd-efficiency and respect

for rank.

In the special case of strict preferences, the algorithm that defines PB is reduced

to a simple procedure where at each step k each agent consumes her kth choice at

the unit rate, starting from the time at which she previously stops consuming. The

algorithm is more involved when preferences are weak. First, at a step k there could be

more than enough objects to satisfy an agent’s demand for her kth choices, and which

shares of objects to allocate depend on other agents’ ℓth choices, where ℓ > k. We

thus introduce a guarantee for the agent and defer the allocation to her to a later step.

Second, within a step k, in light of the agents’ nested kth indifference classes, we take

a similar parametric network approach as in Katta and Sethuraman (2006), and first

allocate objects to the bottleneck set of agents through a maximum flow.4 Therefore,

the procedure within each step generally consists of multiple rounds of allocation, with

guarantees being possibly generated at the last round.

As the Boston mechanism and PS, PB is manipulable. We show that in general there

does not exist a strategy-proof mechanism that satisfies our central requirement of re-

spect for rank, even under strict preferences. However, replacing the Boston mechanism

with random tie-breaking (which is only applicable to strict preferences) with PB is not

as costly, since the former is also manipulable. This is in contrast to the trade-offs faced

in considering probabilistic versions of other deterministic mechanisms, where a mar-

ket designer has to choose between a strategy-proof one and a manipulable one with

4Some guarantees may also be delivered at the same time. Moreover, due to the network technique
used, the algorithm finds the outcome in polynomial time.

3



better ex-ante properties.5

In the end, we briefly discuss a few closely related mechanisms. First, Han (2023)

introduces a probabilistic version of the Boston mechanism for strict preferences and

weak priorities. It is equivalent to PB when preferences are strict and priorities are de-

generate.6 Second, Chen et al. (2023) proposes and characterizes a similar mechanism

that also satisfies sd-efficiency and respect for rank, in the context of strict preferences

and degenerate priorities. We discuss the differences in details in Section 4.1. Finally,

when there are outside options, the dichotomous preference domain becomes a special

case of weak preferences. In this case, PB is equivalent to both the extended PS and the

egalitarian solution of Bogomolnaia and Moulin (2004).

The rest of the paper is organized as follows. The next section presents the model.

Section 3 introduces the Boston mechanism as well as PS, and motivates our design.

In Section 4 we introduce PB, where we present its simple form for strict preferences

and illustrate the mechanism for weak preferences through an example, before a formal

definition. Section 5 discusses the properties of PB and Section 6 concludes. All proofs

are given in the appendix.

2 The Model

Let N be a finite and non-empty set of agents, and A a set of objects. Assume |N |= |A|.
Each agent i ∈ N has a complete and transitive preference relation 󲻞i on A, with ≻i

and ∼i denoting its asymmetric and symmetric components respectively. A preference

profile 󲻞= (󲻞i)i∈N is a list of individual preferences. We fix N and A in the rest of the

paper. Then a problem is represented by a preference profile 󲻞.7

5For instance, the probabilistic versions of DA (Kesten and Ünver, 2015, Han, 2023) and the top
trading cycles mechanism (Yu and Zhang, 2021) are manipulable, while such mechanisms with random
tie-breaking are strategy-proof.

6More specifically, Han (2023) focuses on a probabilistic version of DA that is generated through a
method called "division". In general we can generate random mechanisms from deterministic mecha-
nisms by this method. As an additional application, he shows that a probabilistic version of the Boston
mechanism can be constructed under strict preferences. However, when preferences are weak, it is not
clear how PB can be constructed from some deterministic mechanism by this method, given that the
Boston mechanism is only defined for strict preferences.

7We focus on the restricted setup for simplicity. Since preferences are allowed to be weak, the mech-
anism we design can be easily extended to the more general model where |N | and |A| may not be equal
and there are outside options by introducing dummy agents and dummy objects. Moreover, the case of
many-to-one allocation, i.e., each object has multiple copies, can also be easily incorporated.
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Given 󲻞, for each agent i ∈ N , let ei(󲻞) be the number of indifference classes in her

preferences, and Ek
i (󲻞), where k ∈

󲷮
1, . . . , ei(󲻞)
󲷯
, be the non-empty set of objects in

her kth indifference class. We also set Ek
i (󲻞) = 󲅭 if k > ei(󲻞). Let ē(󲻞) =max

󲷮
ei(󲻞) :

i ∈ N
󲷯
, and Ek

M(󲻞) = ∪i∈M Ek
i (󲻞) for any M ⊆ N and k ∈

󲷮
1, . . . , ē(󲻞)
󲷯
. In addition, we

use ri(󲻞, a) to denote the rank of object a in the preferences of i, i.e., ri(󲻞, a) = k if

and only if a ∈ Ek
i (󲻞).8 When the problem under consideration is clear, we often omit

the dependence of the above symbols on 󲻞.

A random allocation, or simply an allocation, is represented by a |N |× |A| matrix

P such that Pia ≥ 0,
󰁓

b∈A Pi b = 1, and
󰁓

j∈N Pja = 1 for all i ∈ N and a ∈ A, where Pia is

the probability that agent i is assigned object a. For each agent i ∈ N , let Pi = (Pia)a∈A

denote the lottery obtained by i under the allocation P. An allocation P is deterministic

if Pia ∈ {0, 1} for all i ∈ N and a ∈ A. By the Birkhoff-von Neumann theorem (Birkhoff,

1946, von Neumann, 1953), every random allocation can be represented as a lottery

over deterministic allocations.

Consider a problem 󲻞. For any i ∈ N , a ∈ A and allocation P, let F(󲻞i, a, P) =󰁓
b∈A:b󲻞i a

Pi b be the probability that i is assigned an object weakly better than a under P.

For two allocations P and P ′, each agent i can compare her lotteries Pi and P ′i using the

first-order stochastic dominance relation 󲻞sd
i : Pi 󲻞sd

i P ′i if F(󲻞i, a, P) ≥ F(󲻞i, a, P ′) for

all a ∈ A. Then two allocations P and P ′ are welfare equivalent if Pi 󲻞sd
i P ′i and P ′i 󲻞sd

i Pi

for all i ∈ N . An allocation P is sd-efficient if there does not exist another allocation P ′

such that (1) P ′i 󲻞sd
i Pi for all i ∈ N , and (2) P and P ′ are not welfare equivalent. When

a deterministic allocation is sd-efficient we simply say that it is efficient.

Given that all agents have equal claim to each object, using random allocations helps

restore fairness. A minimum fairness requirement is that any two agents with the same

preferences should receive lotteries that are equivalent in welfare terms. Formally, an

allocation P satisfies equal treatment of equals if for any i, j ∈ N , 󲻞i=󲻞 j implies

F(󲻞i, a, P) = F(󲻞 j, a, P) for all a ∈ A.

Finally, a mechanism is a functionϕ that selects an allocationϕ(󲻞) to each problem

󲻞. A mechanism is said to satisfy a certain axiom if its outcome satisfies the axiom for

every problem. A mechanism ϕ is strategy-proof if for any 󲻞, i ∈ N and 󲻞′i, ϕi(󲻞)󲻞sd
i

ϕi(󲻞′i,󲻞−i).

8For weak preferences there could be other definitions of "rank", and we focus on the simplest and
natural one. This is also the rank concept adopted in the studies on rank-maximal matchings with weak
preferences (see, for example, Irving et al. (2006)).
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3 Motivation

The Boston mechanism has been mostly studied in the setting of priority-based alloca-

tion, or school choice problems, with strict preferences and strict priorities. To intro-

duce the mechanism, we first envision that each object a ∈ A has an exogenous priority

ordering over the agents N . When the priority orderings are strict, for any strict pref-

erence profile 󲻞 the Boston mechanism chooses a deterministic allocation through the

following procedure:

In each step k ≥ 1, consider only the agents who have not been assigned an

object, and the objects that have not been assigned to an agent. If the kth

choice of agent i is object a, and i has higher priority for a than any other

agent whose kth choice is a, then assign a to i.

The outcome is efficient, and respects preference ranks, or favors higher ranks (Kojima

and Ünver, 2014), in the sense that if agent i envies the object a received by another

agent j, then r j(󲻞, a)≤ ri(󲻞, a).
If priorities are weak, as in many school choice programs in practice, a natural

and fair solution is to pick an ordering of the agents from the uniform distribution to

break the ties in priorities, and then apply the Boston mechanism. This leads to a ran-

dom mechanism that satisfies the minimum fairness requirement of equal treatment of

equals. However, as shown by Chen et al. (2023), the Boston mechanism with random

tie-breaking is not sd-efficient, and does not respect preference ranks from the ex-ante

perspective: the random allocation generated may fail to satisfy the following axiom.

Definition 1. An allocation P for 󲻞 satisfies respect for rank if there do not exist i, j ∈ N

and a ∈ A such that Pia > 0, F(󲻞 j, a, P)< 1, and r j(󲻞, a)< ri(󲻞, a).

By the definitions, it is straightforward to see that if a random allocation satisfies sd-

efficiency and respect for rank, then for any lottery decomposition every deterministic

allocation in the support is efficient and satisfies respect for rank.

Our goal is to design a fair random mechanism that satisfies sd-efficiency and respect

for rank. We allow weak preferences, but restrict attention to the simple and special

case of weak priorities where all agents have equal priority or claim for each object.9

9This can also model some school choice problems precisely: as discussed in Pathak and Sethuraman
(2011), in the supplementary round of student assignment in New York City, all students have the same
priority for each school.
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Note that, for each problem 󲻞, there is an endogenous and non-homogenous priority

structure generated by agent preferences, where agent i has a higher priority than agent

j at object a if ri(󲻞, a)< r j(󲻞, a), and the axiom of respect for rank essentially requires

a random allocation to be ex-ante stable (Roth et al., 1993, Kesten and Ünver, 2015)

with respect to such priorities.

In designing a probabilistic version of the Boston mechanism, we will also incorpo-

rate features of the probabilistic serial mechanism (PS) from Bogomolnaia and Moulin

(2001). Under strict preferences, it selects an allocation through a consumption (or

"eating") procedure where the agents simultaneously consume their best available ob-

jects at the unit rate during the unit time interval. Hashimoto et al. (2014) show that

ordinal fairness is a defining property of PS. An allocation P is ordinally fair for 󲻞 if

for any i, j ∈ N and a ∈ A, Pia > 0 implies F(󲻞 j, a, P) ≥ F(󲻞i, a, P). It requires that

the allocation of the probability shares of any object a should try to equalize everyone’s

surplus at a, i.e., the probability of receiving an object at least as good as a. Therefore,

in general an agent with a smaller probability of receiving a strictly better object would

receive a larger share of a, which is an obvious feature of PS as such agent starts to con-

sume a earlier. As discussed in Han (2023), ordinal fairness can also be normatively

justified through a general principle of fairness, compensation.10 For the general case

of weak preferences, Katta and Sethuraman (2006) generalize PS and introduce the

extended PS solution, which is still characterized by ordinal fairness (Heo and Yılmaz,

2015).

Given that respect for rank guides the allocation of an object between agents who

rank it differently, we can naturally impose the requirement of ordinal fairness for the

agents who rank the object equally:

Definition 2. An allocation P for 󲻞 is equal-rank ordinally fair if for any i, j ∈ N and

a ∈ A with ri(󲻞, a) = r j(󲻞, a), Pia > 0 implies F(󲻞 j, a, P)≥ F(󲻞i, a, P).

It is straightforward to show that equal-rank ordinal fairness implies equal treatment

of equals. Moreover, the Boston mechanism with random tie-breaking is not equal-rank

ordinally fair.11

10Moulin (2004) provides detailed discussions of four principles of fairness: exogenous rights, compen-
sation, reward, and fitness. In general, compensation says the allocation of resources should compensate
for the differences in those primary individual characteristics, and equalize the shares of the higher-order
characteristic or the more essential commodity. In considering the allocation of the shares of an object
in our context, we take an agent’s surplus at the object as the higher-order characteristic.

11One example is given by the problem in Example 2 below in Section 4.1. Let P ′ denote the outcome
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Finally, it is worth mentioning that our three desiderata in the design, sd-efficiency,

respect for rank and equal-rank ordinal fairness, are independent. Under strict prefer-

ences, the fractional Boston rule of Chen et al. (2023) only satisfies sd-efficiency and re-

spect for rank, and PS only satisfies sd-efficiency and equal-rank ordinal fairness. More

importantly, the following example illustrates that, under weak preferences, respect for

rank in conjunction with equal-rank ordinal fairness does not imply sd-efficiency. This

is in contrast to the fact that respect for rank itself implies sd-efficiency under strict

preferences (Chen et al., 2023).12

Example 1. Suppose that N = {1, 2, 3} and A= {a, b, c}. Consider the following prefer-

ences 󲻞, where agent 3’s first choices are b and c, as well as an allocation P:

󲻞1 󲻞2 󲻞3

a a b, c

b b a

c c

P =

a b c

1 1
2 0 1

2

2 1
2 0 1

2

3 0 1 0

It is easy to check that P satisfies respect for rank and equal-rank ordinal fairness. It is not

sd-efficient as agent 2 can trade some shares of c for agent 3’s shares of b.

4 The Probabilistic Boston Mechanism

4.1 The Case of Strict Preferences

We first present our mechanism in the simple case of strict preferences. As in the Boston

mechanism, in each step k we only allocate agents’ kth choices. Within each step, the

allocation follows a consumption procedure as in PS. Overall, for each agent we will

keep track of her own consumption timeline, and she will consume from t = 0 to

t = 1 to receive a total probability shares of 1. Given a strict preference profile 󲻞, the

procedure can be simply described as follows:

In each step k ≥ 1, if agent i has consumed objects up to time t ∈ [0, 1)
before step k,13 and her kth choice, an object a, is not exhausted yet, then

from applying the Boston mechanism after a single ordering is picked from the uniform distribution to
break the ties at all objects. Then P ′3c =

31
60 and F(󲻞3, c, P ′) = 51

60 > F(󲻞1, c, P ′) = 49
60 .

12For deterministic allocations this is first shown by Kojima and Ünver (2014).
13 t < 1 indicates that she is not fully satisfied yet. Moreover, t = 0 if k = 1.
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she starts to consume the remaining shares of a from t at the unit rate until

it is exhausted or her consumption time reaches 1.

We use the following example to illustrate this procedure.

Example 2. Suppose that N = {1, 2, 3, 4, 5} and A= {a, b, c, d, e}. The preferences 󲻞 and

the allocation P selected by the mechanism are:14

󲻞1 󲻞2 󲻞3 󲻞4 󲻞5

a a b b b

c d c a a

d d d d

e e e e

P =

a b c d e

1 1
2 0 5

12 0 1
12

2 1
2 0 0 1

2 0

3 0 1
3

7
12 0 1

12

4 0 1
3 0 1

4
5
12

5 0 1
3 0 1

4
5
12

Step 1: 1 and 2 consume a from t = 0 to t = 1
2 , and 3, 4 and 5 consume b from t = 0

to t = 1
3 .

Step 2: 1 and 3 consume their second choice c but they start from different times: 1

starts from t = 1
2 , while 3 starts from t = 1

3 . Then c is exhausted at t = 11
12 . 2 consumes d

from t = 1
2 to t = 1 and she is then fully satisfied. 4 and 5 do not consume as their second

choice a is already exhausted in the previous step.

Step 3: 1 and 3 start to consume d from t = 11
12 , while 4 and 5 start to consume d from

t = 1
3 . The remaining 1

2 of d is exhausted at t = 7
12 by 4 and 5, before 1 and 3 start.

Step 4: 1, 3, 4 and 5 consume e and they are fully satisfied after e is exhausted at

t = 1.

Under strict preferences our mechanism is similar to the fractional Boston rule of

Chen et al. (2023). The difference is that in each step k of their rule the clock is reset

for all agents and they start to consume their kth choices at the same time (t = 0).

Therefore, this guarantees the key fairness desideratum of equal-rank envy-freeness in

their design, which requires that the allocation of each object among the agents who

rank it equally should try to equalize their probabilities of receiving this object. In

contrast, in our case an agent always starts to consume from the time at which she

stops in the last step, which ensures equal-rank ordinal fairness.

14For each preference relation we only list the first few objects that are relevant for the mechansim.
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4.2 Preliminaries on Network Flows

In defining our mechanism for general weak preferences, we rely on network tech-

niques. Below we first present the necessary concepts and results from network flow

theory that will be used in the analysis.

A directed graph (V,󲺔 ) consists of a non-empty and finite set of vertices V and a set

of edges 󲺔 ⊆
󲷮
(v, w) ∈ V × V : v ∕= w

󲷯
. Then a network is a directed graph (V,󲺔 ) with a

source vertex s ∈ V , a sink vertex u ∈ V \{s}, and an edge capacity function c : 󲺔 → 󲻆+.

A flow in this network is a function f : 󲺔 → 󲻆+ such that

1. f (v, w)≤ c(v, w) for all (v, w) ∈ 󲺔 , and

2.
󰁓

w:(w,v)∈󲺔 f (w, v) =
󰁓

w:(v,w)∈󲺔 f (v, w) for all v ∈ V \ {s, u} (conservation law).

The value of the flow f , i.e., the amount sent from s to u, is

󰁛

v:(s,v)∈󲺔
f (s, v)−
󰁛

v:(v,s)∈󲺔
f (v, s).15

A maximum flow is a flow of maximum value.

On the other hand, a cut is represented by a set X ⊆ V with s ∈ X and u ∈ V \ X .

The capacity of the cut X is 󰁛

(v,w)∈󲺔 :v∈X ,w∈V\X
c(v, w).

With a slight abuse of notation, we use c(X ) to denote the capacity of the cut X . A

minimum cut is a cut of minimum capacity. When both X and X ′ are minimum cuts,

X ∪ X ′ is also a minimum cut.

By the conservation law, the value of a flow f is equal to the net flow across a cut

X , i.e.,
󰁓
(v,w)∈󲺔 :v∈X ,w∈V\X f (v, w)−

󰁓
(v,w)∈󲺔 :v∈V\X ,w∈X f (v, w). Therefore, the value of a

maximum flow cannot exceed the capacity of a minimum cut. Then, the central result

in the network flow theory, the max-flow min-cut theorem (Ford and Fulkerson, 1956),

states that the two numbers are equal. A key implication of the theorem that will be used

later is that, given a minimum cut X and a maximum flow f , we have f (v, w) = c(v, w)
for all (v, w) ∈ 󲺔 with v ∈ X and w ∈ V \ X .

15By the conservation law this is equal to
󰁓

v:(v,u)∈󲺔 f (v, u)−
󰁓

v:(u,v)∈󲺔 f (u, v).
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4.3 Description of the Construction and an Illustrative Example

In the general weak preference domain we still focus on allocating agents’ kth choices

at the kth step, but there are two main complications in extending the simple allocation

procedure in the case of strict preferences. First, at a step k there could be more than

enough objects to fully satisfy an agent’s demand for her kth choices. To achieve sd-

efficiency, we have to defer the allocation of her kth choices to her to a later step. For

instance, if an agent i has two first choices, a and b, and neither of them is a first choice

of any other agent, then the shares of a and b allocated to i should depend on how

these objects are desired at later steps. We handle this by introducing guarantees, i.e.,

let i be guaranteed a total shares of 1 from a and b. In general, guarantees generated

at a step will always be delivered at a later step, which ensures respect for rank.

Second, when agents have multiple kth choices, and their kth choices (partially)

overlap, different allocations at step k lead to different distributions of their probabili-

ties of receiving the first k choices (i.e., their surpluses at their kth choices). To satisfy

equal-rank ordinal fairness as well as sd-efficiency, we have to identify "bottleneck" set

of agents, and, roughly speaking, allocate the most demanded objects first. Therefore,

the allocation procedure within each step k will consist of multiple rounds. At each

round, we take a similar approach as Katta and Sethuraman (2006), and construct a

parametric network to find the bottleneck, allocate some agents’ kth choices to them,

and possibly deliver some guarantees (generated at previous steps) at the same time.

In general, after several rounds of allocation, if at the last round there are more than

enough objects to fully satisfy the remaining agents’ demands for their kth choices, we

generate guarantees for them.

Before formally defining the algorithm that finds the outcome of our mechanism,

we construct a large problem to illustrate all the key aspects of the design. There are

11 agents and 11 objects: N = {1, . . . , 11} and A= {a1, . . . , a11}. The preferences are:

󲻞1 󲻞2 󲻞3 󲻞4 󲻞5 󲻞6 󲻞7 󲻞8 󲻞9 󲻞10 󲻞11

a1, a2 a3 a3 a3 a3 a4 a4 a4 a5 a5 a5

a1, a2 a1, a6, a7 a4 a4 a3 a3 a8 a8 a3 a3

a9 a1, a9 a2, a9 a10 a10 a9, a10 a9, a10 a6, a7, a10

a7 a7, a11 a11 a11 a11 a11 a11

We will focus on explaining the several rounds within the third step of the algorithm,

omitting the details and the networks for the first two steps.
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At the first step, agents 2, 3, 4 and 5 are each assigned 1
4 of a3, and 6, . . . , 11 are

each assigned 1
3 of the first choice. Agent 1 is guaranteed a share of g1 = 1 from the

objects D1 = {a1, a2}.
At the second step, 8 and 9 are each assigned 1

2 of a8. Given agent 1’s guarantee,

since 2 only demands 3
4 from {a1, a2} and 3 only demands 3

4 from {a1, a6, a7}, there

are more than enough objects to fully satisfy the three agents, and the allocation of

{a1, a2, a6, a7} is not decisive at this point. Hence we create new guarantees: let g2 =
3
4 ,

D2 = {a1, a2}, g3 =
3
4 and D3 = {a1, a6, a7}. Besides, any other agent is not assigned

anything as her second choice is already exhausted.

Below we summarize the information needed for the next step, where for an agent

i without a guarantee, τi is the amount received so far and Di = E3
i .

i 1 2 3

gi 1 3
4

3
4

Di a1, a2 a1, a2 a1, a6, a7

i 4 5 6 7 8 9 10 11

τi
1
4

1
4

1
3

1
3

5
6

5
6

1
3

1
3

Di a9 a1, a9 a2, a9 a10 a10 a9, a10 a9, a10 a6, a7, a10

Consider the third step. At the first round we construct the network in Figure 1,

with a parameter λ. Each agent points to the objects that she demands, i.e., there is an

edge from i to a if a ∈ Di.
16 The capacity of such edge is set to∞ (or some sufficiently

large number) and we omit it for most of the edges. The source points to each agent

i, and the capacity of (s, i) is gi if i has a guarantee, and is max
󲷮
λ− τi, 0
󲷯

otherwise.

Each object a points to the sink, and the capacity of (a, u) is equal to 1. Therefore,

when λ ≤ 1, any flow f in the network gives a feasible assignment of (some of) the

probability shares of the objects to the agents, where each i is assigned f (i, a) of a ∈ Di.

We gradually increase λ from the smallest τi,
1
4 . When λ is small and close to 1

4 , {s}
is always the unique minimum cut. In this case, the max-flow min-cut theorem indicates

that, under any maximum flow, the flow on each (s, i) is equal to its capacity. That is, for

a small λ we can allocate objects so that: (1) for each agent i without a guarantee, the

16In principle all the remaining objects are included in the network, but we omitted a11 as it is not
demanded, and is thus irrelevant for the analysis.
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1

2

max{λ − 1
3 , 0}

max{λ − 1
3 , 0}

max{λ − 5
6 , 0}

max{λ − 5
6 , 0}

3

4

5

6

7

8

9

10

11

max{λ − 1
3 , 0}

max{λ − 1
3 , 0}

max{λ −
1
4
, 0}

max{λ −
1

4
, 0}

g 3
=
3

4

g 2
=
3

4

g 1
= 1

a1

a2

u

a6

a7

a10

∞

1

1

1

1

1

1

∞

s

a9

Figure 1: The network at round 1 of step 3. For λ = 25
36 (the breakpoint) the largest

minimum cut is {s, 1, 2, 4, 5, 6, a1, a2, a9}.

probability of receiving her first three choices is max{λ,τi}, which ensures equal-rank

ordinal fairness, and (2) all the guarantees are delivered at the same time.

When λ reaches the breakpoint of 25
36 , {s} is still a minimum cut but no longer the

unique one. At this point, {s, 1, 2, 4, 5, 6, a1, a2, a9} is the largest minimum cut, which

includes the agents 1, 2, 4, 5, 6 and all objects that they demand. In fact, under any

maximum flow these objects are all assigned to them,17 and the amount received by

each i is equal to the capacity of (s, i). Therefore, we simply pick an arbitrary maximum

flow to assign {a1, a2, a9} to the agents in the bottleneck set {1, 2, 4, 5, 6}: assign a share

of 1 from {a1, a2} to agent 1, 3
4 from {a1, a2} to 2, 25

36 − 1
4 of a9 to 4, 25

36 − 1
4 from {a1, a9}

to 5, and 25
36 − 1

3 from {a2, a9} to 6.

The first round of step 3 then terminates, and the assigned agents become inactive

17We give a formal analysis of the network in the next section, and prove results such as this.
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at the remaining rounds of this step. Note that a9 is also demanded by agents 9 and 10

but they do not receive a share. The capacity of (s, 9) is 0 at the breakpoint, as agent

9 already has a large probability of receiving her first two choices. On the other hand,

as seen below agent 10 is assigned at the next round, where the breakpoint is larger,

indicating a larger surplus at her third choices.

At the second round, we construct the network in Figure 2 with the active agents

and remaining objects. At the breakpoint 5
6 , {s} is a minimum cut, and {s, 7, 8, 9, 10, a10}

is the largest minimum cut. The capacities of (s, 8) and (s, 9) are 0, and thus 8 and 9

do not receive any share in a flow. Hence we simply consider the largest minimum cut

without zero-capacity, which is {s, 7, 10, a10}. Then each one in the bottleneck set {7, 10}
is assigned 5

6 −τ7 =
1
2 of a10.

max{λ − 1
3 , 0}

max{λ − 1
3 , 0}

max{λ − 5
6 , 0}

max{λ −
5
6

, 0}

3

7

8

9

10

11

max{λ −
1
3
, 0}g 3 =

3
4

u

a6

a7

a10

∞

1

1

1

∞

s

Figure 2: The network at round 2 of step 3. For λ = 5
6 the largest minimum cut without

zero-capacity is {s, 7, 10, a10}.

At the third round, consider the network in Figure 3. Note that, although they are

not assigned yet in step 3, agents 8 and 9 are no longer active as their third choices

are exhausted. In this simple network, {s} is still the unique minimum cut for λ = 1,

i.e., there are more than enough objects to fully satisfy 3 and 11. Hence we generate a

guarantee for 11 by setting g11 = 1− τ11 =
2
3 and D11 = {a6, a7}. Then the procedure

within step 3 terminates after round 3.

In the end, the fourth step is the final step with only one round of allocation, in

which the breakpoint is equal to 1 and every agent is fully satisfied.
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max{λ − 1
3 , 0}

3

11

g3 =
3
4

u

a6

a7

∞
1

1

∞

s

∞ ∞

s

Figure 3: The network at round 3 of step 3. For λ = 1, {s} is the unique minimum cut.

4.4 Analysis on the Parametric Network

In the remaining of Section 4, we fix a problem 󲻞, and define the algorithm that finds

the outcome of our mechanism. As the algorithm is rather involved, in this subsection

we analyze and define how objects are allocated or guarantees are generated through

the network approach at an arbitrary round. Then we present the complete algorithm

that embeds the network approach in the following subsection.

Suppose that at round t of step k:

• The set of remaining objects is A∗ ∕= 󲅭, and the set of active agents is N ∗ ∕= 󲅭.

• I ⊊ N ∗ is the set of active agents with guarantees. Each i ∈ I is guaranteed

gi ∈ (0, 1] from the objects Di ⊆ A∗.

• For any non-empty I ′ ⊆ I ,
󰁓

i∈I ′ gi <
󲷲󲷲∪i∈I ′ Di

󲷲󲷲. This ensures that there are more

than enough objects to deliver all the guarantees.

• For each i ∈ N ∗ \ I , she has a non-empty set of available kth choices Di ⊆ A∗, and

the total probability shares assigned to her before step k is τi ∈ [0, 1).

For any M ⊆ N ∗, let DM = ∪i∈M Di be the collection of objects demanded by the

agents M . List the numbers
󲷮
τi : i ∈ N ∗ \ I
󲷯

as τ1,τ2, . . . ,τℓ such that 0 ≤ τ1 < τ2 <

. . . < τℓ < 1. For any λ ∈ [τ1, λ̄], where λ̄ = |A∗|+ 1, define a network (V,󲺔 ) with a

source s, a sink u, and a capacity function cλ such that

• V = {s}∪ N ∗ ∪ A∗ ∪ {u}.

• 󲺔 =
󲷮
(s, i) : i ∈ N ∗
󲷯
∪
󲷮
(i, a) : i ∈ N ∗, a ∈ Di

󲷯
∪
󲷮
(a, u) : a ∈ A∗
󲷯
.
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• For each i ∈ I , cλ(s, i) = gi.

• For each i ∈ N ∗ \ I , cλ(s, i) =max
󲷮
λ−τi, 0
󲷯
.

• For each i ∈ N ∗ and a ∈ Di, cλ(i, a) =∞.

• For each a ∈ A∗, cλ(a, u) = 1.

To analyze the allocation of objects through maximum flows, the key is to under-

stand the properties of minimum cuts in the network. Below we first present several

technical results regarding minimum cuts.

4.4.1 Minimum Cuts

First, due to the infinite capacities of the edges from agents to objects, the objects in-

cluded in a minimum cut are exactly the ones demanded by the agents in the cut:

Lemma 1. For any λ ∈ [τ1, λ̄], if X is a minimum cut, then X = {s}∪M ∪ DM for some

(possibly empty) M ⊆ N ∗.

Therefore, for brevity, given any M ⊆ N ∗ we also use M to denote the cut {s}∪M ∪
DM . The next lemma gives additional structural results on a minimum cut.

Lemma 2. Suppose that M ⊆ N ∗, M ∕= 󲅭 and M is a minimum cut for some λ ∈ [τ1, λ̄].
Then M \ I ∕= 󲅭. Moreover, if i ∈ M and cλ(s, i) = 0, then M \ {i} is also a minimum cut.

That is, it is not possible that all agents in a minimum cut M with M ∕= 󲅭 have

guarantees. Moreover, when the edge from s to an agent i ∈ M has zero capacity,

eliminating this agent leads to a smaller minimum cut. Therefore, for any λ, there is a

minimum cut M such that cλ(s, i)> 0 for all i ∈ M , which we refer to as a minimum cut

without zero-capacity. Then by taking unions, there is a unique largest minimum cut

without zero-capacity (in terms of set inclusion).

We are most interested in the circumstances under which {s} is a minimum cut.

Therefore, in the end we design a simple and intuitive procedure that finds the largest

minimum cut without zero-capacity using an arbitrary maximum flow, when {s} is a

minimum cut. This will be useful in the following discussions on object allocation as

well as computations.
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Let λ ∈ [τ1, λ̄] and suppose that {s} is a minimum cut. For any flow f , let

A( f ) =
󲷮

a ∈ A∗ : f (a, u) = 1
󲷯

denote the "fully-assigned" objects under f .

The following reduction procedure constructs a sequence of maximum flows

with decreasing sets of fully-assigned objects, starting from any maximum

flow f1.

At each step m≥ 1: if there are i ∈ N ∗ and a ∈ A( fm) such that fm(i, a)> 0

and Di \A( fm) ∕= 󲅭, then we construct another maximum flow fm+1 such that

A( fm+1) = A( fm) \ {a}, by decreasing fm(i, a) and fm(a, u) by some small

ε > 0, and increasing fm(i, b) and fm(b, u) by ε for some b ∈ Di \ A( fm);18

the procedure stops at this step otherwise.

The procedure will stop at some step m̄, and the outcome is the maximum

flow fm̄.

Lemma 3. Consider any λ ∈ [τ1, λ̄] such that {s} is a minimum cut. Let f be the outcome

of any reduction procedure, and

M =
󲷮

i ∈ N ∗ : f (i, a)> 0 for some a ∈ A( f )
󲷯
.

Then M is the largest minimum cut without zero-capacity.

It follows immediately from the above lemma that:

Corollary 1. For any λ ∈ [τ1, λ̄], if {s} is the unique minimum cut, then there is a maxi-

mum flow f with A( f ) = 󲅭.

4.4.2 Allocating the Objects

Let κ(λ) be the capacity of a minimum cut for every λ ∈ [τ1, λ̄], i.e., κ is the minimum

cut capacity function. Lemma 1 indicates that κ is the lower envelope of the finite set of

functions
󲷮

cλ(M) : M ⊆ N ∗
󲷯
, where for any M and λ,

cλ(M) = |DM |+
󰁛

i∈N∗\M
cλ(s, i).

It is straightforward to see that each cλ(M) is a piecewise linear (convex) function of λ.

18The procedure is iterative: even if we eliminate all such fully-assigned objects as a from A( fm) at this
step, A( fm+1) may still be reducible at the next step.
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When λ = τ1, cλ(s, i) = 0 for all i ∈ N ∗ \ I . It is clear that M cannot be a minimum

cut if M ∕= 󲅭 and cλ(s, i) = 0 for all i ∈ M . Then it follows from Lemma 2 that {s} is

the unique minimum cut. Given the above discussions on κ, for a small ε > 0, {s} is

also the unique minimum cut for λ = τ1 + ε. Then, by the max-flow min-cut theorem,

f (s, i) = cτ1+ε(s, i) for any maximum flow f and i ∈ N ∗.

Therefore, for a small λ we can allocate objects to the agents such that, for each

i ∈ N ∗ \ I , her probability of receiving her first k choices is max{λ,τi}, and all the

guarantees are delivered. Moreover, by Corollary 1, there are more than enough objects

to achieve such allocation, i.e., no object would be exhausted. However, this may be

infeasible for a larger λ.

When λ = λ̄ = |A∗|+1, cλ
󲷦
{s}∪N ∗ ∪A∗
󲷧
< cλ
󲷦
{s}
󲷧
, i.e., {s} is no longer a minimum

cut. Then, in light of the above discussions on κ being the lower envelope of
󲷮

cλ(M) :

M ⊆ N ∗
󲷯
, there exists λ∗ ∈ (τ1, λ̄) such that (1) for λ ∈ [τ1,λ∗), {s} is the unique

minimum cut, and (2) for λ = λ∗, {s} is a minimum cut but not the unique one, which

indicates that it is not the largest minimum cut without zero-capacity. We refer to λ∗ as

the breakpoint. If λ∗ ≤ 1 and the largest minimum cut without zero-capacity for λ∗ is

M , then M ∕= 󲅭 is referred to as the bottleneck.

Consider the case that λ = λ∗ ≤ 1 and the bottleneck is M . Pick any maximum

flow f . By the max-flow min-cut theorem, f (s, i) = cλ∗(s, i) for all i ∈ N ∗. That is,

we can still allocate the objects so that the probability of receiving her first k choices is

max{λ∗,τi} for each i ∈ N ∗ \ I , and all the guarantees are delivered. However, by the

theorem again,

󰁛

i∈N∗\M
f (s, i) + |DM |= cλ∗(M) = cλ∗({s}) =

󰁛

i∈N∗\M
f (s, i) +
󰁛

i∈M

f (s, i),

which implies
󰁓

i∈M f (s, i) = |DM |, i.e., the objects DM are exhausted and they are all al-

located to the agents M under f . Furthermore, only the objects DM need to be allocated

at this point: if f ′ is the outcome of a reduction procedure, then it is straightforward to

show A( f ′) = DM using Lemma 3.

Therefore, we let each i ∈ M \ I be assigned λ∗ − τi of the objects Di, and each

i ∈ M ∩ I be assigned gi of the objects Di, according to any maximum flow.

On the other hand, when λ∗ > 1, {s} is the unique minimum cut for λ = 1 and

thus we can fully satisfy all the demands from N ∗ without exhausting any object. In

this case we create new guarantees, instead of allocating objects: let each i ∈ N ∗ \ I be
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guaranteed 1−τi from Di.

4.4.3 Computations

As shown in the next subsection, the complete algorithm takes at most ē(󲻞) steps for

the problem 󲻞, and within each step the number of rounds is bounded by the number

of remaining objects plus one. For the parametric network at a given round, efficient

methods to compute a maximum flow are well-understood, and our simple reduction

procedure gives the bottleneck when the breakpoint λ∗ ≤ 1. Therefore, to have a

polynomial-time algorithm, the only computational considerations are how to deter-

mine whether λ∗ ≤ 1, and to find the exact value of the breakpoint when λ∗ ≤ 1.

If τi = τ j for all i, j ∈ N ∗\ I , then every edge capacity is a linear function of λ. In this

special case, the minimum cut capacity function κ is a piecewise linear concave function,

and a fast polynomial-time algorithm from Gallo et al. (1989) finds the smallest value

of λ at which the slope of κ changes, which is the breakpoint λ∗.19 While in general an

edge capacity cλ(s, i) may not be linear in λ, we can still easily pin down λ∗ using the

the algorithm of Gallo et al. (1989) in conjunction with the reduction procedure.

Assume ℓ ≥ 2 and recall that 0 ≤ τ1 < τ2 < . . . < τℓ < 1. We first consider the

interval [τ1,τ2], and check if {s} is a minimum cut for λ = τ2. If not, since each edge

capacity is linear within the interval, the breakpoint λ∗ ∈ (τ1,τ2) can be found by the

method of Gallo et al. (1989). On the other hand, when {s} is a minimum cut for λ = τ2,

we use the reduction procedure to find the largest minimum cut without zero-capacity,

so that it can be determined if {s} is the unique minimum cut. If not, λ∗ = τ2. If {s} is

the unique minimum cut for λ = τ2, we repeat the above analysis for the next interval

[τ2,τ3] and continue in this fashion. In the end, if {s} is the unique minimum cut for

λ = τℓ, we consider the interval [τℓ, 1], and will either find λ∗ ∈ (τℓ, 1] or conclude

that λ∗ > 1.

4.5 The Complete Algorithm

At each step k ≥ 1:

• The set of remaining objects is Ak, and the set of remaining agents is N k.

19Recall that κ is the lower envelope of the functions
󲷮

cλ(M) : M ⊆ N ∗
󲷯
, each of which is linear on

[τ1, λ̄] in this case.
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• I k ⊆ N k is the set of remaining agents with guarantees. Each i ∈ I k is guaranteed

gi ∈ (0, 1] from the objects Gi ∩ Ak.

• For any non-empty I ′ ⊆ I k,
󰁓

i∈I ′ gi <
󲷲󲷲∪i∈I ′ (Gi ∩ Ak)
󲷲󲷲.

• The total probability shares assigned to each i ∈ N k\ I k before step k is τk
i ∈ [0, 1).

Remark 1. Suppose Ak ∕= 󲅭. As will be seen from the construction of the algorithm, the total

remaining demands must be equal to the number of remaining objects, i.e.,
󰁓

i∈N k\Ik(1−
τk

i ) +
󰁓

i∈Ik gi = |Ak|. In conjunction with the above inequality regarding guarantees, this

indicates that N k \ I k ∕= 󲅭.

Let A1 = A, N 1 = N , I1 = 󲅭, and τ1
i = 0 for all i ∈ N 1.

Within step k, at each round t ≥ 1:

• The set of remaining objects is Ak
t .

• The set of active agents is N k
t . We consider an agent i ∈ N k active at round t if (1)

i /∈ I k and some of her kth choices are still available at this round, or (2) i ∈ I k

and her guarantee has not been delivered.

• I k
t ⊆ N k

t is the set of active agents with guarantees. For any non-empty I ′ ⊆ I k
t ,󰁓

i∈I ′ gi <
󲷲󲷲∪i∈I ′ (Gi ∩ Ak

t)
󲷲󲷲.

Let Ak
1 = Ak, N k

1 =
󲷮

i ∈ N k \ I k : Ek
i ∩Ak ∕= 󲅭
󲷯
∪ I k, and I k

1 = I k. For each i ∈ N k \N k
1 , her

kth choices are already exhausted, and we set τk+1
i = τk

i before round 1.

At round t, if N k
t \ I k

t ∕= 󲅭, setup the parametric network as defined before, and

denote the breakpoint as λk
t . If λk

t ≤ 1, find the value of λk
t as well as the bottleneck

M k
t . Allocate the objects

󲹏
Ek

M k
t \Ik

t
∪
󲷮
∪i∈M k

t ∩Ik
t

Gi

󲷯󲹒
∩ Ak

t such that:

• each i ∈ M k
t \ I k

t is assigned λk
t −τk

i of the objects in Ek
i ∩ Ak

t , and

• each i ∈ M k
t ∩ I k

t is assigned gi of the objects in Gi ∩ Ak
t .

Then, after allocation, we continue to the next round by defining

• τk+1
i = λk

t for each i ∈ M k
t \ I k

t ,

• Ak
t+1 = Ak

t \
󲹏

Ek
M k

t \Ik
t
∪
󲷮
∪i∈M k

t ∩Ik
t

Gi

󲷯󲹒
,
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• I k
t+1 = I k

t \M k
t ,

• N k
t+1 =
󲹏

i ∈ N k
t \
󲷮

I k
t ∪M k

t

󲷯
: Ek

i ∩ Ak
t+1 ∕= 󲅭
󲹒
∪ I k

t+1, and

• τk+1
i = τk

i for each i ∈ N k
t \
󲷮

N k
t+1 ∪M k

t

󲷯
.20

The procedure within step k terminates after round t if (1) N k
t \ I k

t = 󲅭, or (2) N k
t \ I k

t ∕= 󲅭
and λk

t > 1. Then, we continue to the next step by defining

• Ak+1 = Ak
t ,

• I k+1 = N k
t ,

• for each i ∈ I k+1 \ I k, Gi = Ek
i ∩ Ak

t and gi = 1−τk
i , and

• N k+1 =
󲹏

i ∈ N k \
󲷮

I k ∪ I k+1
󲷯

: τk+1
i < 1
󲹒
∪ I k+1.

Finally, the algorithm terminates after step k if Ak+1 = 󲅭.

The following lemma ensures that the assumption on guarantees at the beginning

of each round or step is always satisfied, and hence the algorithm is well-defined.

Lemma 4. At any round t of any step k,
󰁓

i∈I ′ gi <
󲷲󲷲 ∪i∈I ′ (Gi ∩ Ak

t)
󲷲󲷲 for any non-empty

I ′ ⊆ I k
t .

On the termination of the algorithm, the following result shows that all objects are

allocated after at most ē steps, and thus the outcome of the algorithm is a well-defined

random allocation.

Lemma 5. There is k ∈ {1, . . . , ē} such that Ak+1 = 󲅭.

In general, there can be multiple ways to allocate the objects at a given round, but

any two outcome allocations from the algorithm are welfare equivalent. Therefore, we

simply define the probabilistic Boston mechanism (PB) as some function that selects

one outcome allocation from the algorithm for every possible problem.

20At round t, such an agent is active, does not have a guarantee, and all of her available kth choices
are allocated to other agents.
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5 Properties

We formally show that the three initial desiderata discussed in Section 3 are satisfied

by PB.

Theorem 1. The probabilistic Boston mechanism satisfies sd-efficiency, respect for rank,

and equal-rank ordinal fairness.

The property of respect for rank is easy to see, since we allocate kth choices to

agents as much as possible at each step k, and all guarantees are delivered in the end.

Overall, the objects are allocated sequentially at multiple rounds of multiple steps. As

established in the proof, sd-efficiency follows from the fact that, for any round of alloca-

tion, each assigned agent receives shares from her currently best available objects that

are also all exhausted at this round. Finally, equal-rank ordinal fairness is guaranteed

by the construction of each network, as well as the key property that breakpoints are

increasing within each step.

Regarding incentives, PB is not a strategy-proof mechanism. For instance, as the

original Boston mechanism, under PB an agent may have the incentive to push up the

rank of some less preferred object in face of competition with other agents at her top-

ranked objects. Formalizing this simple intuition, we show that the central requirement

of respect for rank in our study is in general incompatible with strategy-proofness, even

in the strict preference domain.

Theorem 2. If |N |≥ 3 and every possible preference relation is strict, then there does not

exist a strategy-proof mechanism that satisfies respect for rank.21

In addition, it is already known from Bogomolnaia and Moulin (2001) that the other

main requirement, sd-efficiency, cannot be achieved by any strategy-proof mechanism

that satisfies equal treatment of equals when |N |≥ 4 and preferences are strict.

As mentioned at the beginning, PB can be easily extended to the more general al-

location model where |N | and |A| may not be equal and there are outside options. In

the special case of dichotomous preferences, i.e., each agent finds any object either

acceptable (better than her outside option) or unacceptable (worse than her outside

option), and is indifferent between acceptable objects, the first step of the algorithm is

sufficient to determine the outcome of PB, which is equivalent to the extended PS and

the egalitarian solution of Bogomolnaia and Moulin (2004).
21It is easy to see that PB is strategy-proof if |N |= 2.
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On the other hand, outside options can make a difference in impossibility results.

Consider the more general allocation model with strict preferences. An allocation is in-

dividually rational if no agent receives an unacceptable object with positive probability.

It is non-wasteful if no agent has a positive probability of receiving an outcome worse

than an object that is not fully assigned. Then the simple proof of Theorem 2 can be

easily modified to show that, if |N |≥ 3 and |A|≥ 2, there does not exist a non-wasteful

and strategy-proof mechanism that satisfies respect for rank. Moreover, Martini (2016)

provides a strong impossibility: if |N | ≥ 4 and |A| ≥ 3, then there does not exist an

individually rational, non-wasteful and strategy-proof mechanism that satisfies equal

treatment of equals.

6 Conclusion

In this study we design a probabilistic version of the Boston mechanism to restore its

attractive properties from the ex-ante perspective, by incorporating the essence of the

probabilistic serial rule. While the algorithm that defines PB involves complicated de-

tails, the outcome is easy to compute through the network approach, and the properties

of PB are intuitive and straightforward to convey. Given that the Boston mechanism

with random tie-breaking is also manipulable, a transition to PB does not seem to cost

much. At the same time, the transition improves the welfare and fairness of the system,

and also makes it possible for agents to express indifferences in preferences.

Appendix

A Proofs

A.1 Proofs of Results in Section 4

Proof of Lemma 1. Given any λ ∈ [τ1, λ̄], suppose that X is a minimum cut. Then

X = {s} ∪ M ∪ A′ for some M ⊆ N ∗ and A′ ⊆ A∗. Since cλ(i, a) =∞ for all i ∈ N ∗ and

a ∈ Di, we have DM ⊆ A′. By the construction of the network,

cλ(X ) = |A′|+
󰁛

i∈N∗\M
cλ(s, i).
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If A′ ∕= DM , then DM ⊊ A′ and

cλ
󲷦
X \ {A′ \ DM}
󲷧
= |DM |+
󰁛

i∈N∗\M
cλ(s, i)< cλ(X ),

contradicting to X being a minimum cut. Therefore, we have A′ = DM , and X = {s} ∪
M ∪ DM .

Proof of Lemma 2. Let M be a minimum cut for λ ∈ [τ1, λ̄] with M ∕= 󲅭.
First, suppose that M ⊆ I . By the initial assumption on guarantees,

󰁓
i∈M gi < |DM |.

Then

cλ
󲷦
M
󲷧
= |DM |+
󰁛

i∈N∗\M
cλ(s, i)>
󰁛

i∈M

gi +
󰁛

i∈N∗\M
cλ(s, i) = cλ
󲷦
{s}
󲷧
.

Hence {s} is a cut with a smaller capacity, and a contradiction is reached.

Second, suppose that i ∈ M and cλ(s, i) = 0. Then

cλ
󲷦
M \ {i}
󲷧
= |DM\{i}|+

󰁛

j∈N∗\{M\{i}}
cλ(s, j)≤ |DM |+ cλ(s, i) +

󰁛

j∈N∗\M
cλ(s, j) = cλ
󲷦
M
󲷧
.

This shows that M \ {i} is also a minimum cut.

Proof of Lemma 3. Let λ, f and M be specified as in the statement of the lemma. We

first show that M is a minimum cut. By the construction of the reduction procedure,

it is straightforward to see that A( f ) = DM . Since there do not exist i ∈ N ∗ \ M and

a ∈ DM such that f (i, a)> 0, by the conservation law,

󰁛

i∈M

f (s, i) =
󰁛

a∈DM

f (a, u),

which is also equal to |DM |, as f (a, u) = 1 for all a ∈ DM . Then we have

cλ
󲷦
M
󲷧
= |DM |+
󰁛

i∈N∗\M
cλ(s, i)

=
󰁛

i∈M

f (s, i) +
󰁛

i∈N∗\M
cλ(s, i)

≤
󰁛

i∈M

cλ(s, i) +
󰁛

i∈N∗\M
cλ(s, i)

= cλ
󲷦
{s}
󲷧
.
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Given that {s} is a minimum cut, M is a minimum cut.

For each i ∈ M , since f (i, a) > 0 for some a ∈ Di, cλ(s, i) > 0. That is, M is a

minimum cut without zero-capacity. Assume to the contrary, M ⊊ M ′ and M ′ is also a

minimum cut without zero-capacity. Then DM ⊆ DM ′ . By the max-flow min-cut theorem,

f (a, u) = 1 for all a ∈ DM ′ . This implies DM ′ ⊆ A( f ) = DM and thus DM ′ = DM . Then,

M ∕= 󲅭, and

cλ
󲷦
M ′
󲷧
= |DM |+
󰁛

i∈N∗\M ′
cλ(s, i)< |DM |+

󰁛

i∈N∗\M
cλ(s, i) = cλ
󲷦
M
󲷧
,

where the inequality follows from the fact that cλ(s, i) > 0 for all i ∈ M ′ \ M . This

contradicts to M being a minimum cut.

Proof of Lemma 4. The inequality condition on guarantees is clearly satisfied at the

first round of the first step as I1
1 = 󲅭. To prove by induction, suppose that it holds at

some round t of some step k. There are two possible cases to consider.

Case 1: round t is the last round of step k, and the algorithm does not terminate after

step k.

If N k
t \ I k

t = 󲅭, then I k
t = N k

t = I k+1 = I k+1
1 and clearly the condition on guarantees

holds at the first round of step k+ 1.

Suppose that N k
t \ I k

t ∕= 󲅭 and new guarantees are generated at this round. By

construction, I k+1 = N k
t , Ak+1 = Ak

t , Gi = Ek
i ∩ Ak

t and gi = 1 − τk
i for all i ∈ I k+1 \ I k

t .

Consider the parametric network constructed at round t of step k, where the breakpoint

λk
t > 1. For λ = 1, {s} is the unique minimum cut. Therefore, for any non-empty

I ′ ⊆ I k+1 we have

c1

󲷦
I ′
󲷧
=
󲷲󲷲∪i∈I ′ (Gi ∩ Ak+1)

󲷲󲷲+
󰁛

i∈Ik+1\I ′
c1(s, i)> c1

󲷦
{s}
󲷧
=
󰁛

i∈I ′
gi +
󰁛

i∈Ik+1\I ′
c1(s, i).

It follows that
󰁓

i∈I ′ gi <
󲷲󲷲 ∪i∈I ′ (Gi ∩ Ak+1)

󲷲󲷲. Then such condition on guarantees also

holds at the first round of step k+ 1.

Case 2: round t is not the last round of step k.

Then some objects are allocated at this round. Assume to the contrary, there is non-

empty I ′ ⊆ I k
t+1 such that
󰁓

i∈I ′ gi ≥
󲷲󲷲∪i∈I ′ (Gi∩Ak

t+1)
󲷲󲷲. Consider the network constructed
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at round t. We have I ′ ⊆ I k
t , M k

t ∩ I ′ = 󲅭, and

cλk
t

󲷦
M k

t ∪ I ′
󲷧
=
󲷲󲷲󲷲
󲹏

Ek
M k

t \Ik
t
∪
󲷮
∪i∈{M k

t ∩Ik
t }∪I ′ Gi

󲷯󲹒
∩ Ak

t

󲷲󲷲󲷲+
󰁛

i∈N k
t \{M k

t ∪I ′}
cλk

t
(s, i)

=
󲷲󲷲󲷲
󲹏

Ek
M k

t \Ik
t
∪
󲷮
∪i∈M k

t ∩Ik
t

Gi

󲷯󲹒
∩ Ak

t

󲷲󲷲󲷲+
󲷲󲷲∪i∈I ′ (Gi ∩ Ak

t+1)
󲷲󲷲+
󰁛

i∈N k
t \{M k

t ∪I ′}
cλk

t
(s, i)

≤
󲷲󲷲󲷲
󲹏

Ek
M k

t \Ik
t
∪
󲷮
∪i∈M k

t ∩Ik
t

Gi

󲷯󲹒
∩ Ak

t

󲷲󲷲󲷲+
󰁛

i∈I ′
gi +
󰁛

i∈N k
t \{M k

t ∪I ′}
cλk

t
(s, i)

= cλk
t

󲷦
M k

t

󲷧
.

This contradicts to the fact that M k
t is the largest minimum cut without zero-capacity

for λk
t .

Proof of Lemma 5. Assume to the contrary, Aē+1 ∕= 󲅭. Then in light of Remark 1,

we can find i ∈ N ē+1 \ I ē+1 and a ∈ Aē+1 such that a ∈ Ek
i for some k ≤ ei ≤ ē. As

τē+1
i < 1, τk

i < 1 and i ∈ N k. Suppose that the procedure within step k terminates after

round t. As a is not allocated to any agent within step k, i is always active within step

k and i ∈ N k
t . By construction, this implies i ∈ I k+1. Then agent i remains to be an

agent with a guarantee until her guarantee is delivered. Therefore, it is impossible that

i ∈ N ē+1 \ I ē+1.

A.2 Proof of Theorem 1

Pick any problem 󲻞 and let P be the allocation selected by the probabilistic Boston

mechanism. Consider the procedure in our algorithm. The following simple fact will

be used in the proof of each property.

Lemma 6. If a ∈ Ak and ri(a)< k, then F(󲻞i, a, P) = 1.

Proof. Let a ∈ Ak and ri(a) = k′ < k. If i /∈ N k′\I k′ , then clearly F(󲻞i, a, P) = 1. Suppose

that i ∈ N k′ \ I k′ , and round t is the last round of step k′. As a is available at each round

of step k′, agent i is active at each round of step k′. In particular, i ∈ N k′
t = I k′+1. That is,

a guarantee is generated for i at round t of step k′. It follows that F(󲻞i, a, P) = 1.

This lemma immediately implies that P satisfies respect for rank: for any i, j ∈ N

and a ∈ A such that Pia > 0 and r j(a) < ri(a), agent i must be assigned a share of a
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at step ri(a) or a later step, and thus a ∈ Ari(a), which indicates F(󲻞 j, a, P) = 1 by the

lemma.

Next, to establish sd-efficiency, we show that whenever some objects are allocated to

some agents at some round, each of these agents is assigned shares of her best available

objects, and all of her best available objects are allocated at the same time.

Lemma 7. Suppose that an agent i ∈ M k
t is assigned a share of a ∈ Ak

t at round t of step

k. Then a 󲻞i b for all b ∈ Ak
t . Moreover, if c ∈ Ak

t and a ∼i c, then c is also allocated at

this round.

Proof. Suppose that i is assigned a share of a at round t of step k. Then ri(a)≤ k (with

strict inequality when i ∈ I k
t ). If there is b ∈ Ak

t such that b ≻i a, ri(b) < k. Then by

Lemma 6, F(󲻞i, b, P) = 1, which contradicts to Pia > 0.

Let c ∈ Ak
t and a ∼i c. If i /∈ I k

t , then ri(a) = k and the objects Ek
i ∩ Ak

t are all

allocated at this round. Hence c is also allocated. On the other hand, suppose that

i ∈ I k
t and the guarantee of i is generated at the last round, round t ′, of step k′ < k.

Then Gi = Ek′
i ∩ Ak′

t ′ , which includes both a and c. It follows that c is also allocated at

round t of step k, as the objects Gi ∩ Ak
t are all allocated at this round.

Assume to the contrary, P is not sd-efficient. By a characterization of sd-efficiency in

Katta and Sethuraman (2006) (Lemma 2 in their paper), we can find Pareto-improving

exchanges of probability shares among some agents at P: formally, there exists a list of

objects (a1, a2, . . . , an) such that n≥ 2 and the following conditions are satisfied.

• For each k ∈ {1, . . . , n}, there exists ik ∈ N such that ak 󲻞ik ak+1 and Pikak+1
> 0,

where an+1 = a1.

• There is ℓ ∈ {1, . . . , n} such that aℓ ≻iℓ aℓ+1.

Then Lemma 7 implies that aℓ is allocated before aℓ+1 (i.e., aℓ is allocated at an

earlier round of the same step or at an earlier step), and for each k, ak and ak+1 are

allocated at the same round or ak is allocated before ak+1. Hence a contradiction is

reached.

Finally, we show equal-rank ordinal fairness, which relies crucially on the fact that

breakpoints are increasing within a step:

Lemma 8. If there are objects allocated at both round t and round t + 1 of step k, then

λk
t < λ

k
t+1.
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Proof. Assume to the contrary, there are objects allocated at both round t and round

t +1 of step k, and λk
t ≥ λk

t+1. Consider the network at round t +1 first. Since both {s}
and M k

t+1 are minimum cuts for λ = λk
t+1, their capacities are equal, which implies

󰁛

i∈M k
t+1

cλk
t+1
(s, i) =
󲷲󲷲󲷲
󲹏

Ek
M k

t+1\Ik
t+1
∪
󲷮
∪i∈M k

t+1∩Ik
t+1

Gi

󲷯󲹒
∩ Ak

t+1

󲷲󲷲󲷲. (1)

Then, consider the network at round t. We have

cλk
t

󲷦
M k

t ∪M k
t+1

󲷧
=
󲷲󲷲󲷲
󲹏

Ek
M k

t \Ik
t
∪
󲷮
∪i∈M k

t ∩Ik
t

Gi

󲷯󲹒
∩ Ak

t

󲷲󲷲󲷲

+
󲷲󲷲󲷲
󲹏

Ek
M k

t+1\Ik
t+1
∪
󲷮
∪i∈M k

t+1∩Ik
t+1

Gi

󲷯󲹒
∩ Ak

t+1

󲷲󲷲󲷲+
󰁛

i∈N k
t \{M k

t ∪M k
t+1}

cλk
t
(s, i)

=
󲷲󲷲󲷲
󲹏

Ek
M k

t \Ik
t
∪
󲷮
∪i∈M k

t ∩Ik
t

Gi

󲷯󲹒
∩ Ak

t

󲷲󲷲󲷲

+
󲷲󲷲󲷲
󲹏

Ek
M k

t+1\Ik
t+1
∪
󲷮
∪i∈M k

t+1∩Ik
t+1

Gi

󲷯󲹒
∩ Ak

t+1

󲷲󲷲󲷲−
󰁛

i∈M k
t+1

cλk
t
(s, i) +
󰁛

i∈N k
t \M k

t

cλk
t
(s, i)

≤
󲷲󲷲󲷲
󲹏

Ek
M k

t \Ik
t
∪
󲷮
∪i∈M k

t ∩Ik
t

Gi

󲷯󲹒
∩ Ak

t

󲷲󲷲󲷲+
󰁛

i∈N k
t \M k

t

cλk
t
(s, i)

= cλk
t

󲷦
M k

t

󲷧
,

where the inequality follows from equation (1) and the fact that cλk
t
(s, i) ≥ cλk

t+1
(s, i)

for all i ∈ M k
t+1. In addition, as M k

t+1 is a minimum cut without zero-capacity for λk
t+1

in the network at round t + 1, cλk
t
(s, i) ≥ cλk

t+1
(s, i) > 0 for all i ∈ M k

t+1. Therefore,

cλk
t

󲷦
M k

t ∪M k
t+1

󲷧
≤ cλk

t

󲷦
M k

t

󲷧
implies that M k

t is not the largest minimum cut without

zero-capacity for λk
t in the network at round t, and a contradiction is reached.

Consider any i, j ∈ N and a ∈ A with ri(a) = r j(a) = k and Pia > 0. If i is assigned

a share of a at step k′ > k, then by Lemma 6 F(󲻞 j, a, P) = 1 ≥ F(󲻞i, a, P). We also

have F(󲻞 j, a, P) = 1 if j /∈ N k \ I k. Therefore, in the remaining proof we assume that i

is assigned a share of a at round t of step k, and i, j ∈ N k \ I k.

Consider the objects Ek
j ∩ Ak, where a ∈ Ek

j ∩ Ak ∕= 󲅭. If Ek
j ∩ Ak+1 ∕= 󲅭, i.e., the

remaining kth choices of j are not all allocated within step k, then by Lemma 6 F(󲻞 j

, a, P) = 1. Suppose that the kth choices of j are exhausted after the allocation at round

t ′ of step k. That is, Ek
j ∩Ak

t ′ ∕= 󲅭 and Ek
j ∩Ak

t ′+1 = 󲅭. Then t ′ ≥ t as i is assigned a share

of a at round t, and j ∈ N k
t ′ by construction. We consider two final scenarios.
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1. j /∈ M k
t ′ . In the network at round t ′, since Ek

j ∩ Ak
t ′ is a subset of the set of objects

allocated to M k
t ′ and M k

t ′ is a minimum cut for λk
t ′ , it is straightforward to see that

cλk
t′
(s, j) = 0. Therefore,

F(󲻞 j, a, P)≥ τk
i ≥ λk

t ′ ≥ λk
t = F(󲻞i, a, P),

where the last inequality follows from Lemma 8.

2. j ∈ M k
t ′ . Then by Lemma 8,

F(󲻞 j, a, P) = λk
t ′ ≥ λk

t = F(󲻞i, a, P).

This finishes the proof of equal-rank ordinal fairness.

A.3 Proof of Theorem 2

Suppose that |N | ≥ 3, preferences are strict, and a mechanism ϕ satisfies respect for

rank. Pick three distinct agents i, j, k, and two objects a and b. Consider a preference

profile 󲻞 such that the first choices of the three agents are a, their second choices are b,

and any other agent’s first choice is not b. Then, for some ℓ ∈ {i, j, k},ϕℓa(󲻞)+ϕℓb(󲻞)<
1. If agent ℓ reports b as her first choice in󲻞′

ℓ
, then by respect for rankϕℓb(󲻞′ℓ,󲻞−ℓ) = 1,

i.e., ϕ is not strategy-proof.
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