On the consistency of random serial dictatorship\textsuperscript{*}

Xiang Han\textsuperscript{†}

December 22, 2015

Abstract

The random serial dictatorship (RSD) can be generalized to indivisible object allocation problems allowing fractional endowments such that symmetry, ex-post efficiency and strategy-proofness are preserved. However, there exists a consistent extension of RSD if and only if the population is less than four. The inconsistency of the generalized RSD is a common feature of strategy-proof rules that satisfy minimal fairness and efficiency properties: symmetry, ex-post efficiency, consistency and strategy-proofness are not compatible.

\textbf{keywords} Consistency; Random serial dictatorship; Random assignment; Strategy-proofness

\textbf{JEL Classification} D61; D63; D70; C78

1 Introduction

When two people both demand a single indivisible object, flipping a coin or playing rock-paper-scissors is a common fair solution. This is the simplest form of \textit{random serial dictatorship} (RSD). Generally, in a \textit{house allocation} problem (Hylland and Zeckhauser, 1979) a group of \textit{n} agents collectively own \textit{n} indivisible objects, and each agent has to be assigned one object without monetary transfer. RSD selects a random assignment by picking an ordering of the agents from the uniform distribution and letting the agents choose their favorite available object

\textsuperscript{*}I am grateful to Rajat Deb for his support and encouragement, to Bo Chen for helpful comments.

\textsuperscript{†}Department of Economics, Southern Methodist University, 3300 Dyer Street Suite 301, Umphrey Lee Center, Dallas, TX 75275, United States; Email: xiangh@smu.edu.
It satisfies a set of desirable properties: symmetry (or equal treatment of equals), ex-post efficiency and strategy-proofness. Incentive compatibility is the main advantage of RSD over another solution to the random assignment problem: the probabilistic serial rule (PS) (Bogomolnaia and Moulin, 2001). In PS, the agents consume the probability shares of their best available objects simultaneously at the unit rate. While PS is not strategy-proof, it satisfies stronger efficiency and fairness properties: sd-efficiency and sd-no-envy. Moreover, it is consistent (Thomson, 2010, Heo, 2014). Then a natural question is that whether RSD also satisfies the consistency principle.

Consistency is a robustness or stability concept that requires a rule to be coherent in selecting assignments for any problem and its subproblems. In the context of random assignments, it states the following: suppose the rule recommends some random assignment for a problem, if some agents leave the problem with their probability shares of the objects, then the rule should recommend the same assignment for each agent in the reduced problem as in the original problem. To discuss this axiom, we consider an environment where there is a set of potential agents (the population) and a set of potential objects. In each allocation problem a subset of agents collectively own some probability shares of the objects that sum to the number of these agents. One way to think of the fractional endowments is that there is some uncertainty about the available resources. Another interpretation is that the indivisible objects can be consumed at different times and some objects are only available for use during a certain time period.

A rule is an extension of RSD to this general environment if it is in agreement with RSD for each allocation problem with integer endowments. The generalized RSD naturally extends RSD by asking the agents to choose their best lottery from the available resources sequentially with respect to each possible ordering. While symmetry, ex-post efficiency and strategy-proofness

---

1See Abdulkadiroğlu and Sönmez (1998) for a discussion of RSD and its equivalence to another rule that selects the core from random endowments.


3Chambers (2004) defines another consistency concept, probabilistic consistency, for random assignments by considering the departure of some agents with sure objects after their lotteries are realized. He shows that the uniform rule is the only symmetric rule that satisfies probabilistic consistency.

4Athanassoglou and Sethuraman (2011) consider the allocation problems with private fractional endowments, for which individual rationality is a main concern.

5On the other hand, PS is already well defined in this environment. Thomson (1994) studies a concept of consistent extension from another perspective: a (multi-valued) rule can be extended by selecting more alternatives for each problem.
are preserved, the generalized RSD is not consistent. In fact, we show that if the population is greater than three, then there does not exist any consistent extension of RSD. When the population is three, a consistent extension of RSD can be constructed, but there does not exist any strategy-proof and consistent extension.

Bogomolnaia and Moulin (2001) establish two important impossibility results for house allocation problems: sd-no-envy, ex-post efficiency and strategy-proofness are not compatible; symmetry, sd-efficiency and strategy-proofness are not compatible. Thus if we restrict attention to the class of rules that satisfy the weak fairness and efficiency properties (symmetry and ex-post efficiency, respectively), then strategy-proofness is not compatible with either sd-efficiency or sd-no-envy. We show that there is also a tension between consistency and strategy-proofness: there does not exist a symmetric, ex-post efficient, consistent and strategy-proof rule. Therefore, comparing the PS solution and the generalized RSD in the general allocation problems with fractional endowments, the inconsistency of the latter is also a cost of strategy-proofness.

2 Preliminaries

Let \( \mathcal{N} \) denote a finite set of potential agents (the population), and \( \mathcal{O} \) a finite set of potential indivisible objects. Assume \( |\mathcal{O}| \geq |\mathcal{N}| \geq 3 \), unless mentioned otherwise. Given any \( O \subseteq \mathcal{O} \), each agent \( i \in \mathcal{N} \) has a complete, transitive and antisymmetric preference relation \( R_i \) on \( O \). Let \( \mathcal{R}_O \) be the set of preference relations on \( O \). \( \omega = (\omega_a)_{a \in \mathcal{O}} \) with \( \omega_a \in [0,1] \) for all \( a \in \mathcal{O} \) is an endowment vector. Denote \( \mathcal{S}(\omega) = \{a \in \mathcal{O} : \omega_a > 0\} \). Then a problem is a triple \( e = (N, \omega, R) \), where \( N \subseteq \mathcal{N} \), \( \sum_{a \in \mathcal{O}} \omega_a = |N| \), and \( R = (R_i)_{i \in \mathcal{N}} \in \mathcal{R}_N^N(\omega) \). Let \( \mathcal{E} \) be the set of all the problems and \( \mathcal{E}^H \) be the set of problems with integer endowments (the house allocation problems).

Given \( e = (N, \omega, R) \), a random assignment is a stochastic matrix \( \pi = [\pi_{ia}]_{i \in \mathcal{N}, a \in \mathcal{O}} \) such that \( \pi_{ia} \geq 0 \) for all \( i \in N, a \in O \), \( \sum_{a \in \mathcal{O}} \pi_{ia} = 1 \) for each \( i \in N \) and \( \sum_{i \in \mathcal{N}} \pi_i = \omega \), where \( \pi_i \) denotes the lottery obtained by agent \( i \). A deterministic assignment is a one-to-one function \( \mu : N \to \mathcal{S}(\omega) \). By the classical Birkhoff - Von Neumann Theorem (Birkhoff, 1946, Von Neumann, 1953), every random assignment can be represented as a lottery over deterministic assignments. A deterministic assignment \( \mu \) is efficient if it cannot be Pareto dominated by another assignment.

---

\(^{6}\)All the results in this paper still hold in a more general setup where the sum of endowments may be different from the number of agents and each agent can be self-assigned for some probability.

\(^{7}\)Note that each deterministic assignment can be written as a stochastic matrix, but due to the fractional endowments it might not be a feasible random assignment.
other deterministic assignment $\mu' : N \rightarrow \mu(N)$. $\pi$ is ex-post efficient if it can be represented as a lottery over some efficient deterministic assignments. An agent may be able to compare two lotteries over the objects by the first-order stochastic dominance relation $R^{sd}_i : \pi_i R^{sd}_i \pi'_i$ if $\sum_{b \in \mathcal{S}(\omega)} \omega_{ib} \pi'_{ib} \geq \sum_{b \in \mathcal{S}(\omega)} \omega_{ib} \pi_{ib}, \forall a \in \mathcal{S}(\omega)$. Then $\pi$ is sd-efficient if there does not exist $\pi'$ such that $\pi' \neq \pi$ and $\pi'_i R^{sd}_i \pi_i, \forall i \in N$. $\pi$ is symmetric if $R_i = R_j$ implies $\pi_i = \pi_j$ for all $i, j \in N$. $\pi$ satisfies sd-no-envy if $\pi_i R^{sd}_i \pi_j$ for all $i, j \in N$.

A rule is a function $f$ that maps each $e \in \mathcal{E}$ to a random assignment $f(e)$. $f$ is said to satisfy a certain property if $f(e)$ satisfies this property for all $e \in \mathcal{E}$. $f$ is strategy-proof if for any $e = (N, \omega, R)$, $i \in N$ and $R'_i \in \mathcal{R}(\mathcal{S}(\omega))$, $f_i(e) R^{sd}_i f_i(N, \omega, (R'_i, R_{-i}))$. Given $e = (N, \omega, R)$, the reduced problem with respect to a random assignment $\pi$ of $e$ and a subset of agents $I \subseteq N$ is defined as $r_i^\pi(e) = \{ I, \omega' = \sum_{i \in I} \pi_i, R|_{I, \mathcal{S}(\omega')})$. Then $f$ is consistent if $(f_i(e))_{i \in I} = f(r_i^f(e))$ for any $e = (N, \omega, R)$ and $I \subseteq N$.

### 3 Main results

The random serial dictatorship (RSD) is defined on $\mathcal{S}^H$. Give $e \in \mathcal{S}^H$, it selects the random assignment $\text{RSD}(e)$ by picking an ordering of the agents from the uniform distribution, and letting the agents choose their best available object sequentially according to this ordering. A rule $f$ is an extension of RSD if $f(e) = \text{RSD}(e)$ for all $e \in \mathcal{S}^H$. One natural way of extending RSD is to randomize over the generalized serial dictatorships. Given any available resources represented by an endowment vector $\omega$ with $\sum_{a \in \mathcal{O}} \omega_a \geq 1$, let $\mathcal{L} = \{ L \in \Delta \mathcal{S}(\omega) : L_a \leq \omega_a, \forall a \in \mathcal{S}(\omega)\}$ be the set of lotteries that can be picked from $\omega$. It can be easily seen that for any agent $i$ with $R_i \in \mathcal{R}(\mathcal{S}(\omega))$, there exists a unique greatest element of $\mathcal{L}$ with respect to $R^{sd}_i$: any agent can find the “best” lottery from the available resources, which first-order stochastically dominates any other feasible lottery. Then for any $e \in \mathcal{E}$, a generalized serial dictatorship asks the agents to choose their best available lottery sequentially according to an ordering, and the generalized RSD simply assigns equal probabilities to each possible generalized serial dictatorship.$^9$

**Proposition 1.** The generalized RSD is symmetric, ex-post efficient and strategy-proof.

The symmetry and strategy-proofness of the generalized RSD are obvious. Ex-post efficiency follows from the fact that any generalized serial dictatorship is sd-efficient and a random-

---

$^9$ denotes the restriction of $R$ to the agents $I$ and the objects $\mathcal{S}(\omega')$.  
$^9$One intuitive interpretation of a generalized serial dictatorship is that the agents consume the probability shares of the objects as in the probabilistic serial rule, but in a sequential manner.
ization over sd-efficient random assignments is ex-post efficient. While the desirable properties of RSD can be preserved under such an extension, consistency cannot be achieved.

**Example 1.** Suppose that \( N = \{i, j, k\} \subseteq \mathcal{N}, \{a, b, c\} \subseteq \mathcal{O}, \omega_a = \omega_b = \omega_c = 1 \). The preferences \( R \) and \( RSD(e = (N, \omega, R)) \) are given as follows.

\[
\begin{array}{ccc}
R_i & R_j & R_k \\
\hline
a & b & b \\
b & a & c \\
c & c & a \\
\end{array}
\quad
\begin{array}{ccc}
a & b & c \\
\hline
i & \frac{5}{6} & 0 & \frac{1}{6} \\
j & \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\
k & 0 & \frac{1}{2} & \frac{1}{2} \\
\end{array}
\]

Suppose that agent \( k \) leaves the problem with her assignment. For the reduced problem \( e' = (\{i, j\}, (\omega_a = 1, \omega_b = \frac{1}{2}, \omega_c = \frac{1}{2}), (R_i, R_j)) \), the generalized RSD selects the following random assignment:

\[
\begin{array}{ccc}
a & b & c \\
\hline
i & \frac{3}{4} & 0 & \frac{1}{4} \\
j & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\end{array}
\]

Clearly, the generalized RSD is not consistent.

It is worth noting that there exist other extensions of RSD such that symmetry, ex-post efficiency and strategy-proofness are also satisfied. For example, one interpretation of fractional endowments is that there is some uncertainty about the available resources before allocation, and a fractional endowment vector can be represented as a (generally, non-unique) lottery over some integer endowment vectors. Thus another extension of RSD can be defined by applying RSD to each standard house allocation problem in the support of this lottery. However, every extension of RSD is inconsistent if the population is at least four:

**Proposition 2.** Suppose \( |\mathcal{N}| \geq 4 \), there does not exist a consistent extension of RSD.

**Proof.** Let \( N = \{i, j, k, l\} \subseteq \mathcal{N}, \{a, b, c, d\} \subseteq \mathcal{O}, \omega_a = \omega_b = \omega_c = \omega_d = 1, R = (R_i, R_j, R_k, R_l) \) and \( R' = (R'_i, R'_j, R_k, R_l) \). The preferences are given as follows.
Consider the problem $e = (\{k, l\}, (\omega_a = \omega_b = \omega_c = \omega_d = \frac{1}{2}), (R_k, R_l))$. If there exists some consistent extension $f$ of RSD, clearly $\pi$ and $\pi'$ above require $f$ to select different assignments for $e$. Thus there does not exist any consistent extension of RSD if $|\mathcal{A}| \geq 4$.

A consistent extension of RSD does exist when $|\mathcal{A}| = 3$. Consider the following construction of a rule $\bar{f}$.

Let $u$ be the uniform rule, i.e., for any $e = (N, \omega, R)$, $u_{ia}(e) = \frac{1}{|N|} \omega_a$ for all $i \in N$ and $a \in \Theta$.

(i) For any $e \in \mathcal{E}^H$, let $\bar{f}(e) = RSD(e)$.

(ii) For any $e = (N, \omega, R) \in \mathcal{E}^H$ with $|N| = 3$, let $\bar{f}(e) = u(e)$.

(iii) For any two-agent problem $e = ((i, j), \omega, (R_i, R_j)) \in \mathcal{E}^H$, if there exists some $\omega'$ and $R_k \in \mathcal{R}_{\omega'}$ such that $e' = ((i, j, k), \omega + \omega', (R_i, R_j, R_k)) \in \mathcal{E}^H$ and $RSD_i(e') + RSD_j(e') = \omega$, then let $\bar{f}_i(e) = RSD_i(e')$ and $\bar{f}_j(e) = RSD_j(e')$.

(iv) For any other two-agent problem $e \notin \mathcal{E}^H$, let $\bar{f}(e) = u(e)$.

To check that $\bar{f}$ is well defined, it is sufficient to show that $\bar{f}_i(e)$ and $\bar{f}_j(e)$ in (iii) are uniquely determined. For a problem $e$ in (iii), it is easy to see that $|\mathcal{S}_\omega| = 3$ and $\omega'$ is unique. Suppose $R_k$ is not unique and some $R_k'$ also satisfies the conditions. Let $e^1 = ((i, j, k), \omega + \omega', (R_i, R_j, R_k'))$ and $e^2 = ((i, j, k), \omega + \omega', (R_i, R_j, R_k'))$. Since $RSD_k(e^1) = RSD_k(e^2) = \omega'$, we have $RSD_i(e^1) = RSD_i(e^2) =$
It has already been established that a consistent extension of RSD exists when \(|\mathcal{N}| = 3\). To see that a strategy-proof and consistent extension does not exist, consider the problem \(e\) and \(e'\) specified in Example 1. Suppose that \(f\) is a strategy-proof and consistent extension of RSD. By consistency \(f(e') = (\text{RSD}_1(e),\text{RSD}_2(e))\). Let \(R'_i = R_i\) and \(e'' = (\{i,j\},(\omega_a = 1,\omega_b = \frac{1}{2},\omega_c = \frac{1}{2}),(R_i,R'_i))\). Then by strategy-proofness \(f_{ic}(e'') = \frac{1}{3}\), thus \(f_{ic}(e'') = \frac{1}{3}\). Now it should be clear that a contradiction can be reached since RSD is anonymous: if we switch the preferences of \(i\) and \(j\) in \(e\), then by a similar argument, the consistency and strategy-proofness of \(f\) imply \(f_{ic}(e'') = \frac{1}{3}\).

So far we have seen that while symmetry, ex-post efficiency and strategy-proofness can be preserved by some extensions of RSD, consistency can only be achieved in special circumstances. On the other hand, the probabilistic serial rule is naturally defined for allocation problems with fractional endowments and it satisfies sd-no-envy, sd-efficiency and consistency. The main advantage of RSD over PS is its incentive compatibility, then does there exist another strategy-proof rule that is also consistent? The following impossibility result shows that the answer is no if we insist on the minimal efficiency and fairness properties.

---

10Formally, \(f\) is nonbossy if for any \(e = (N,\omega,R)\in \mathcal{E}, i \in N\) and \(R'_i \in \mathcal{R}_i(\omega)\), \(f_i(e) = f_i(e' = (N,\omega,(R_i,R'_i)))\) implies \(f(e) = f(e')\). Notice that, in the example given in the proof of Proposition 2, a consistent extension of RSD does not exist since the coalition \(\{i,j\}\) is “bossy”: after changing their preferences, they change the assignments of \(k\) and \(l\) while the probability shares of the objects allocated to the coalition remain the same.

11Although the term “fractional endowments” is used in the text, obviously the endowments can be irrational numbers and the set of problems is not countable.
Proposition 4. There does not exist a symmetric, ex-post efficient, consistent and strategy-proof rule.

Proof. It is sufficient to consider the case of $|\mathcal{N}| = 3$. Suppose that there exists a symmetric, ex-post efficient, consistent and strategy-proof rule $f$. Clearly for any $e = (N, \omega, R) \in \mathcal{E}^H$ with $|N| < 3$, $f(e) = RSD(e)$. Bogomolnaia and Moulin (2001) show that for the subset of problems $e = (N, \omega, R) \in \mathcal{E}^H, |N| = 3$, RSD is characterized by symmetry, ex-post efficiency and strategy-proofness. Hence $f$ is a consistent extension of RSD. But this contradicts to Proposition 3 since $f$ is strategy-proof.

The result is tight: a generalized serial dictatorship satisfies all the axioms except symmetry; the uniform rule satisfies all the axioms except ex-post efficiency; the generalized RSD satisfies all the axioms except consistency; finally the probabilistic serial rule satisfies all the axioms except strategy-proofness.

Proposition 4 is closely related two impossibility results in Bogomolnaia and Moulin (2001): for the house allocation problems with at least three agents, sd-no-envy, ex-post efficiency and strategy-proofness are not compatible; for the house allocation problems with at least four agents, symmetry, sd-efficiency and strategy-proofness are not compatible. One interpretation is that if we focus on the class of rules that satisfy the minimal efficiency and fairness properties (ex-post efficiency and symmetry, respectively), then sd-no-envy or sd-efficiency is not compatible with strategy-proofness. Proposition 4 shows that consistency is also incompatible with strategy-proofness among this class of rules.

Finally, notice that since we are considering a larger class of problems than those considered by Bogomolnaia and Moulin (2001), the incompatibility of symmetry, sd-efficiency and strategy-proofness can be more easily obtained: they are not compatible in the case of $|\mathcal{N}| = 2$ and $|\mathcal{O}| = 3$.\footnote{However, the impossibility result concerning sd-no-envy still requires at least three agents, since when there are only two agents, the generalized RSD can be shown to satisfy sd-no-envy.} Hence even flipping a coin or playing the rock-paper-scissors may involve ex-ante efficiency loss when two agents face some uncertainty about the available resources. We finish the discussion in this paper by providing a simple proof.

Proposition 5. Suppose $|\mathcal{N}| \geq 2$ and $|\mathcal{O}| \geq 3$. There does not exist a symmetric, sd-efficient and strategy-proof rule.

Proof. Suppose that there exists a symmetric, sd-efficient and strategy-proof rule $f$. Consider, again, the problem $e'$ in Example 1. We fix the set of agents and the endowment vector, and
write \( f \) as a function of preferences only. For instance, \( f(abc, bac) \) denotes the assignment \( f(e') \). First, by symmetry,

\[
\begin{array}{ccc}
  & a & b & c \\
\hline
i & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
& \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
\end{array}
\]

By strategy-proofness, \( f_{ic}(abc, bac) = f_{jc}(abc, bac) = \frac{1}{4} \). If \( f_{ib}(abc, bac) > 0 \), then sd-efficiency implies \( f_{ia}(abc, bac) = 0 \), which is impossible since \( \omega_b + \omega_c = 1 \). Hence \( f_{ib}(abc, bac) = 0 \) and we have:

\[
\begin{array}{ccc}
  & a & b & c \\
\hline
i & \frac{3}{4} & 0 & \frac{1}{4} \\
& \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\end{array}
\]

Strategy-proofness implies \( f(acb, bac) = f(abc, bac) \). By strategy-proofness again, \( f_{ic}(acb, abc) = \frac{1}{4} \). By sd-efficiency \( f_{ib}(acb, abc) = 0 \), so we have \( f(acb, abc) = f(acb, bac) \). Now given that \( f_{ia}(acb, abc) = \frac{3}{4} \) and \( f_{ia}(abc, abc) = \frac{1}{2} \), clearly agent \( i \) can manipulate her true preferences \( abc \), contradicting to the strategy-proofness of \( f \).

References


---

\(^{13}\)This follows from a characterization of sd-efficiency by Bogomolnaia and Moulin (2001). Given any \( e = (N, \omega, R) \) and a random assignment \( \pi \), define a binary relation \( \tau \) on \( \mathcal{P}(\omega) \): \( a \tau b \) if there exists \( i \in N \) such that \( \pi_{ib} > 0 \), \( aRb \) and \( a \neq b \). Then \( \pi \) is sd-efficient if and only if \( \tau \) is acyclic.


