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Abstract

As a random allocation rule for indivisible object allocation under weak pri-

orities, deferred acceptance with single tie-breaking (DA-STB) is not ex-post con-

strained efficient. We first observe that it also fails to satisfy a natural fairness no-

tion, symmetry at the top, which requires that two agents be assigned their common

top choice with equal probability if they have equal claim to it. Then, it is shown

that DA-STB is ex-post constrained efficient, if and only if it is symmetric at the top,

if and only if the priority structure satisfies a certain acyclic condition. We further

characterize the priority structures under which DA-STB is ex-post efficient. Based

on the characterized priority domains, and using a weak fairness notion called lo-

cal envy-freeness, new theoretical support is provided for this widely used rule in

practice: for any priority structure, among the class of strategy-proof, ex-post sta-

ble, symmetric, and locally envy-free rules, each one of the three desiderata—ex-

post constrained efficiency, ex-post stability-and-efficiency, and symmetry at the

top—can be achieved if and only if it can be achieved by DA-STB.
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1 Introduction

We consider the priority-augmented indivisible object allocation problem, in which

agents have strict preferences over objects, and the objects have priority rankings over

the agents. There might be multiple copies of each object, which are to be allocated

without monetary transfers. This problem is closely related to the two-sided match-

ing market (Gale and Shapley, 1962), and school choice (Abdulkadiroğlu and Sönmez,

2003) is one of its most important applications in practice. The stability concept from

the two-sided matching theory is mainly interpreted as a fairness notion in our context:

an allocation of the objects is stable if it is individually rational, nonwasteful, and there

is no situation in which one agent envies another’s assignment for which the first agent

has a higher priority.

Preferences of the agents are the only private information, and an allocation rule

maps each preference profile of the agents to an allocation, for a given priority struc-

ture. In designing a satisfactory rule, fairness, efficiency and incentive compatibility

are the main desiderata. When the priorities are strict, the deferred acceptance algo-

rithm (DA) from Gale and Shapley (1962) is often considered as the "best rule", which

receives some strong theoretical support. First, it is the only stable and strategy-proof

rule (Alcalde and Barberà, 1994). Second, it selects the unique stable allocation that

Pareto dominates every other stable allocation, i.e., it is stability-constrained efficient.

However, it may not be efficient as stability is generally incompatible with efficiency

(Roth, 1982, Abdulkadiroğlu and Sönmez, 2003). Full efficiency can be achieved for

certain priority structures: Ergin (2002) shows that acyclicity on the priority structure

is necessary and sufficient for DA to be an efficient rule.1

In this paper, we consider the more general setting that allows ties in priorities,

which are common in practice.2 There are two fairness considerations in the context of

weak priorities. On one hand, an allocation should respect the differences in priorities

in the sense of stability. On the other hand, we want to treat the agents with equal

priority for an object in a fair way. Then random allocations are necessary to restore

fairness with respect to the ties in priorities. A standard fairness notion in this regard is

equal treatment of equals, which requires that any two agents with the same preferences

and the same priorities for all the objects receive the same lottery. For our purpose,

1It follows that acyclicity is also necessary and sufficient for the existence of a stable and efficient rule.
2For instance, in Boston school choice programs, students are prioritized based on only two criteria

(the sibling and walk zone criteria), and hence large indifference classes exist.
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we define a slightly stronger concept: we say a random allocation is symmetric if any

two agents with the same preferences and the same priorities for their common set of

acceptable objects receive the same lottery.

In the presence of ties, there is no longer a "best rule." A natural and common solu-

tion is to first break the ties randomly, then apply DA. In fact, DA with single tie-breaking

(DA-STB) is widely used in practice (Abdulkadiroğlu et al., 2009), in which an ordering

of the agents is drawn from the uniform distribution to break the ties at all the objects.

While DA-STB is strategy-proof, ex-post stable and symmetric, there is a large class

of random allocation rules that satisfy these three basic properties, and it is not clear

whether DA-STB has a special role among this class. Moreover, tie-breaking can lead

to welfare loss, and DA-STB may not be constrained efficient ex-post (Erdil and Ergin,

2008). In this study we discover a fairness issue that is also related to tie-breaking.

One potentially important criterion for welfare evaluation is the agents’ probabilities

of obtaining their top choices. We define a new concept, symmetry at the top, which

requires that any two agents with the same top choice and the same priority for this

object receive it with equal probability.3,4 It is then shown that DA-STB is generally not

symmetric at the top. In addition, we also introduce strong symmetry, which requires

that any two agents with the same preferences and priorities for their common top k

choices have the same probability of getting each of these k objects, for every k ≥ 1.

We first want to understand the circumstances in which several desirable efficiency

and fairness axioms are satisfied by DA-STB. It is shown that the following four state-

ments are equivalent: (1) DA-STB is ex-post constrained efficient, (2) DA-STB is sym-

metric at the top, (3) DA-STB is strongly symmetric, and (4) the priority structure is

T-acyclic. T-acyclicity is defined by ruling out two types of cycles in the priorities that in-

volve ties.5 When there is such a cycle, for some preferences, applying DA after ties are

3The media often focuses on the number of students who receive their top choice when reporting
school admissions. For instance, "Higher proportion of pupils fail to get top choice of secondary school"
(Weale, 2017), and "According to district officials, only 55% of families to apply for a kindergarten seat
during the priority-registration period get a seat in the school they ranked first, while 85% get one of
their first three choices" (Larkin and Jung, 2020). Therefore, it is easier to defend a rule if it satisfies
symmetry at the top in practice.

4In the special case where all the agents have equal claim to each object, symmetry at the top is
equivalent to equal-top fairness defined by Zhang (2019).

5In a cycle of the first type, agent i1 is ranked higher than two equally ranked agents i2 and i3 at object
x1, i3 is ranked weakly higher than i4 at x2, . . . , and in is ranked weakly higher than i1 at xn−1, where
n≥ 3 and in+1 = i1. In a cycle of the second type, three agents i, j, k are equally ranked at object x , while
k is ranked higher than i at another object y . In both cases some scarcity conditions related to object
capacities need also be satisfied.

3



broken by a single ordering will give a constrained inefficient outcome, i.e., breaking

ties in the cycle creates artificial stability constraints that lead to welfare loss. Fur-

thermore, Ehlers and Erdil (2010) show that every constrained efficient deterministic

allocation for every preference profile is efficient if and only if the priority structure

is strongly acyclic. We define strong T-acyclicity as the combination of T-acyclicity and

strong acyclicity. Then it is shown that DA-STB is ex-post efficient if and only if the

priority structure is strongly T-acyclic.

Next, we focus on those priority structures that fail to satisfy T-acyclicity or strong

T-acyclicity. A natural question to ask is that, given a priority structure under which DA-

STB can not deliver a certain desirable efficiency or fairness property (such as ex-post

constrained efficiency, ex-post efficiency, symmetry at the top, or strong symmetry),

whether some other "reasonable" rule can. We will show that the answer turns out to

be no, if a reasonable rule is required to satisfy the three basic properties of strategy-

proofness, ex-post stability and symmetry, as well as a new and mild fairness axiom

regarding equal priorities.

While symmetry is a common requirement in house allocation (Hylland and Zeck-

hauser, 1979),6 in our context it is a weak fairness notion regarding equal priorities,

since the agents can differ not only in preferences but also in their priority rankings. We

introduce local envy-freeness, which rules out situations where two agents are ranked

equally by some object, the first agent receives this object with probability one, while

the second agent, who desires this object, receives it with probability zero. Local envy-

freeness can be considered as a very weak version of the original envy-freeness concept

in house allocation, tailored to the setting with priorities, and it is satisfied by a large

class of rules including DA-STB. Then, as the second set of main results in this paper,

we show that if the priority structure is not T-acyclic (resp. strongly T-acyclic), then

there does not exist a strategy-proof, ex-post constrained efficient (resp. ex-post stable-

and-efficient), symmetric and locally envy-free rule, or a strategy-proof, ex-post stable,

symmetric at the top and locally envy-free rule.

These impossibility results highlight the important role of DA-STB: if it fails to sat-

isfy ex-post constrained efficiency, ex-post stability-and-efficiency, symmetry at the top

or strong symmetry, then any other "reasonable" rule fails too.7 Therefore, for exam-

6In house allocation, priorities are absent, or equivalently, each object (house) ranks all the agents
equally.

7It is common to see that impossibility results provide some justification for a rule. As a classical
example in the random assignment literature, Bogomolnaia and Moulin (2001) show that, in house allo-
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ple, if a market designer values constrained efficiency, and only chooses from strategy-

proof, ex-post stable, symmetric and locally envy-free rules, then she would find DA-

STB a promising solution without even checking the priority structure, as there is no

circumstance where another rule outperforms DA-STB in terms of ex-post constrained

efficiency.

As far as we know, despite its popularity in practical applications, there had been

almost no theoretical support for DA-STB except the well-known fact that it is strategy-

proof, ex-post stable and symmetric. Regarding efficiency, Abdulkadiroğlu et al. (2009)

provide some support for DA with a certain fixed single tie-breaking, which is viewed

as a deterministic rule. They show that every constrained efficient deterministic allo-

cation can be selected by DA with some fixed single tie-breaking. But this does not

imply that DA with some fixed single tie-breaking is a constrained efficient rule. It is

also shown that DA with any fixed single tie-breaking cannot be Pareto dominated by

a strategy-proof deterministic rule. However, any strategy-proof, individually rational

and nonwasteful deterministic rule cannot be Pareto dominated by a strategy-proof de-

terministic rule (Erdil, 2014, Alva and Manjunath, 2019). On the other hand, regarding

fairness, there is in fact a common perception that DA with multiple tie-breaking (DA-

MTB), in which for each object an ordering of the agents is drawn independently to

break the ties, is fairer than DA-STB.8 However, our results show that DA-STB satisfies

symmetry at the top or strong symmetry whenever some other strategy-proof, ex-post

stable and locally envy-free rule (such as DA-MTB) does. Moreover, DA-MTB is not

symmetric at the top for some T-acyclic priority structures.

1.1 Related Literature

DA-STB was first adopted in school choice programs in New York City and Boston. Ab-

dulkadiroğlu et al. (2005a) and Abdulkadiroğlu et al. (2005b) provide detailed discus-

sions on the practical design considerations in these places. The ex-post constrained in-

efficiency of DA-STB is not only a theoretical concern: the welfare loss from tie-breaking

is significant in realistic scenarios as shown by Erdil and Ergin (2008) using computer

cation, there does not exist a rule that satisfies strategy-proofness, stochastic-dominance-efficiency and
equal treatment of equals. Therefore, if we want to achieve the last two properties, then the probabilistic
serial rule is a good solution, although it is not strategy-proof.

8For instance, in the design of NYC high school match DA-MTB was initially preferred to DA-STB by
policy makers for fairness reasons (Abdulkadiroğlu et al., 2009).
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simulations, and by Abdulkadiroğlu et al. (2009) using field data.9 Erdil and Ergin

(2008) propose an important concept of stable improvement cycles, which can be used

to Pareto improve the realized outcome of DA-STB, leading to constrained efficiency.

However, such procedure is not incentive compatible: they also show that a strategy-

proof and constrained efficient deterministic rule generally does not exist. On the other

hand, Erdil (2014) considers Pareto improvement over DA-STB from the ex-ante per-

spective. It is shown that the random allocation selected by DA-STB can be wasteful,

and consequently for some priority structures DA-STB admits a strategy-proof improve-

ment in terms of first-order stochastic dominance.10

DA-STB may not be the only rule that can be justified using our theoretical results.11

A general axiomatic characterization of DA-STB is not known yet. As mentioned ear-

lier, in the extreme case of strict priorities DA is characterized by stability and strategy-

proofness.12 This result has been recently strengthened by Alva and Manjunath (2019).

They show that DA is the only strategy-proof and stable-dominating rule. Ehlers and

Klaus (2006) and Kojima and Manea (2010a) also provide characterizations of DA in

the context of priority-augmented allocation. In the other extreme case of house allo-

cation, DA-STB is reduced to random serial dictatorship (RSD), which is equivalent to

core from random endowments (Abdulkadiroğlu and Sönmez, 1998). In addition, Che

and Kojima (2010) show that RSD is asymptotically equivalent to the probabilistic se-

rial rule from Bogomolnaia and Moulin (2001). Strategy-proofness, ex-post efficiency

and symmetry are well-known properties of RSD. However, it is not clear whether these

properties together with some additional ones can pin down RSD. Its axiomatic char-

acterization had been an open question until recently Pycia and Troyan (2022) provide

the first characterization using Pareto efficiency, symmetry (as defined in their context)

and the key concept of obvious strategy-proofness.

There are several studies that investigate the trade-offs between DA-STB and DA-

MTB. Empirical evidence by Abdulkadiroğlu et al. (2009) and De Haan et al. (forthcom-

ing) suggests that under DA-STB there are more agents assigned top choices, but also

more agents assigned lower ranked objects. Theoretical studies in large markets with

9We discuss such evidence in Remark 1 in Section 4.
10DA-STB also fails to satisfy several new fairness properties defined from the ex-ante perspective,

motivating the design of new random allocation rules: see Kesten and Ünver (2015), Afacan (2018) and
Han (2022). However, these properties are generally incompatible with strategy-proofness.

11We discuss the uniqueness of DA-STB in Section 5.
12Most of the school choice literature studies the case of strict priorities and the rule of DA. See Pathak

(2011) for a recent review.
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random preferences, such as Ashlagi et al. (2019), Ashlagi and Nikzad (2020), Arnosti

(forthcoming) and Allman et al. (forthcoming), compare rank distributions under the

two tie-breaking methods and identify circumstances under which STB is superior to

MTB.

Finally, following Ergin (2002), there is a growing literature on the characterization

of priority structures for some existing rule to satisfy various desirable properties, or

for a certain desirable rule to exist. See, for example, Kesten (2006), Ehlers (2007),

Haeringer and Klijn (2009), Ehlers and Erdil (2010), Kojima (2011), Kesten (2012),

Kojima (2013), Kumano (2013), Chen (2014), Tomoeda (2018), Han (2018), Ehlers

and Westkamp (2018) and Ishida (2019). All of these studies focus on deterministic

rules. Our results also provide a characterization of the priority structures under which

DA with any fixed single tie-breaking is an (constrained) efficient deterministic rule. In

the special case of unit capacities, the weak priority structures under which a (group)

strategy-proof, stable and efficient deterministic rule exists, and the ones under which a

strategy-proof constrained efficient deterministic rule exists, are characterized by Han

(2018) and Ehlers and Westkamp (2018) respectively. Generalizations of the results in

these two papers to the many-to-one setting remain open questions. Our results provide

some partial answers, by restricting attention to random allocation rules that satisfy the

fairness properties regarding ties.

2 Preliminaries

Let N be a finite set of agents and X a finite set of objects. For each object x ∈ X , there

are qx ≥ 1 copies available, and x has a complete and transitive priority ordering ≽x

on N , with≻x and∼x denoting its asymmetric and symmetric components, respectively.

Given i ∈ N , let U(≽x , i) = { j ∈ N : j ≽x i}, SU(≽x , i) = { j ∈ N : j ≻x i}, and I(≽x , i) =
{ j ∈ N : j ∼x i}. A priority structure ≽= (≽x)x∈X is a profile of priority orderings.

Let 󲅭 denote the null object, or the outside option, with a capacity of q󲅭 = +∞, and

X̄ = X ∪{󲅭}. Each agent i ∈ N has a complete, transitive and antisymmetric preference

relation Ri on X̄ , with Pi denoting its asymmetric component. An object x ∈ X is

acceptable to i if xRi󲅭. Given x ∈ X̄ , let U(Ri, x) =
󲷮

y ∈ X̄ : yRi x
󲷯

and SU(Ri, x) =󲷮
y ∈ X̄ : yPi x
󲷯
. A preference profile R= (Ri)i∈N is a list of individual preferences. We

fix N , X and (qx)x∈X in the rest of the paper. Then a priority-augmented allocation

problem, or simply a problem, is represented by a pair (≽, R).
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A random allocation, or simply an allocation, is a |N |× |X̄ | matrix M with Mi x ≥
0,
󰁓

y∈X̄ Mi y = 1 and
󰁓

j∈N M j x ≤ qx for all i ∈ N and x ∈ X̄ , where Mi x represents the

probability that i is assigned x . Let Mi = (Mi x)x∈X̄ denote the lottery obtained by i under

the allocation M . An allocation M is deterministic if Mi x ∈ {0, 1} for all i ∈ N and x ∈
X̄ . For ease of exposition, we also use a function µ : N → X̄ , where |µ−1(x)|≤ qx for all

x ∈ X̄ , to represent a deterministic allocation. Let 󲺓 be the set of all such deterministic

allocations. By a generalized version of the Birkhoff-von Neumann theorem (Birkhoff,

1946, von Neumann, 1953, Kojima and Manea, 2010b), every random allocation can

be represented as a lottery over deterministic allocations.13 That is, for any allocation

M , there exists a lottery λ over 󲺓 such that Mi x =
󰁓
µ∈󲺓:µ(i)=x λ(µ) for all i ∈ N and

x ∈ X̄ , where λ(µ) ≥ 0 denotes the probability of each µ ∈ 󲺓 and
󰁓
µ∈󲺓 λ(µ) = 1. In

this case, we also say that the lottery λ induces M . Denote the support of a lottery λ

as 󲺢 (λ) = {µ ∈ 󲺓 : λ(µ)> 0}.
Given (≽, R), µ ∈ 󲺓 Pareto dominates ν ∈ 󲺓 if µ(i)Riν(i) for all i ∈ N and

µ( j)Pjν( j) for some j ∈ N . µ is efficient if it cannot be Pareto dominated by any deter-

ministic allocation. µ is stable if it satisfies the following conditions: (1) individual

rationality, µ(i)Ri󲅭, ∀i ∈ N ;14 (2) nonwastefulness, |µ−1(x)| < qx implies µ(i)Ri x ,

∀x ∈ X , i ∈ N ; (3) respecting priorities, µ( j)Piµ(i) implies j ≽µ( j) i, ∀i, j ∈ N . Then,

a random allocation M is ex-post efficient (resp., ex-post stable) if some λ induces

M and each µ ∈ 󲺢 (λ) is efficient (resp., stable). Similarly, M is ex-post stable-and-

efficient if some λ induces M and each µ ∈ 󲺢 (λ) is both stable and efficient. If M is

ex-post stable-and-efficient, then clearly it is both ex-post stable and ex-post efficient.

However, the converse might not be true. Han (2015) provides an example in which

an ex-post stable and ex-post efficient allocation is not ex-post stable-and-efficient. We

include this example in Appendix C.

Given a priority structure ≽, a rule is a function that maps each preference profile

to a random allocation. A rule f is said to satisfy a certain property defined above

if f (R) satisfies this property for all R. f is strategy-proof if for each agent truth-

telling yields a lottery that first-order stochastically dominates the lottery obtained from

reporting any other preferences: for any i ∈ N , x ∈ X̄ , R and R′i,
󰁓

y∈U(Ri ,x)
fi y(R) ≥󰁓

y∈U(Ri ,x)
fi y(R′i, R−i).

13There could be multiple lottery representations of a random allocation. Also, see Budish et al. (2013)
for a maximal generalization of this theorem to a broader class of allocation problems.

14We also say that a random allocation M is individually rational if for all i ∈ N and x ∈ X , Mi x > 0
implies xRi󲅭.
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The purpose of using random allocations is to treat agents with equal priorities in

a fair way. A standard fairness notion in this regard is equal treatment of equals, which

requires that any two agents with the same preferences and the same priority at each

object should receive the same lottery. For our purpose, we define a slightly stronger

version of this notion. Given (≽, R), an allocation M is symmetric if for any i, j ∈ N such

that SU(Ri,󲅭) = SU(R j,󲅭), Ri|SU(Ri ,󲅭) = R j|SU(Ri ,󲅭), and i ∼x j for all x ∈ SU(Ri,󲅭), we

have Mi = M j.
15 So two agents are considered to be "equals" if they only have different

preferences and/or priorities regarding their common set of unacceptable objects. This

strengthening of the original equal treatment of equals notion can be justified if we

require that the allocation recommended by a rule does not vary with preferences or

priorities regarding unacceptable objects.16

3 Deferred Acceptance With Single Tie-Breaking

The rule of central interest in this paper is deferred acceptance with single tie-breaking.

To introduce this rule, we first consider the special case of strict priorities. That is,

consider some ≽ such that ≽x is antisymmetric for all x ∈ X . In this case, we can

restrict attention to deterministic allocations, since no randomization is needed to deal

with the fairness issue regarding ties. Given any R, there exists an agent-optimal stable

deterministic allocation, i.e., a stable deterministic allocation that Pareto dominates any

other stable deterministic allocation. This allocation is given by the following (agent-

proposing) deferred acceptance algorithm (DA) from Gale and Shapley (1962).

Step 1. Each agent applies to her favorite acceptable object. Each object x places the

applicants with the highest priorities up to its quota qx on its waiting list, and rejects

all the other applicants.

Step k ≥ 2. Each agent who was rejected in Step k−1 applies to her next best acceptable

object. Each object x chooses among the new applicants and the applicants on its

waiting list, places the ones with the highest priorities up to its quota qx on its waiting

list, and rejects all others.

15Ri |SU(Ri ,󲅭) is the restriction of Ri to SU(Ri ,󲅭).
16In Appendix B, Example B.3 shows that some of our results do not hold if we replace symmetry with

equal treatment of equals. However, we can replace it with a slightly weaker requirement: whenever
two agents have the same preferences over X̄ and the same priorities for their acceptable objects, they
receive the same lottery.
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The process terminates when there are no more rejections. Then the copies of each

object are assigned to the agents on its waiting list.

DA is also strategy-proof (Dubins and Freedman, 1981, Roth, 1982). However, it

may not be efficient. Ergin (2002) shows that DA is an efficient rule if and only if ≽
satisfies the acyclicity condition, which is defined as the absence of a cycle involving

three agents and two objects.17 To facilitate our analysis later, we first present a more

general version of this concept. A generalized cycle consists of n ≥ 3 distinct agents

i1, . . . , in ∈ N and n − 1 distinct objects x1, . . . , xn−1 ∈ X such that the following two

conditions are satisfied:

• (Cycle) i1 ≻x1
i2 ≻x1

i3, and ik+1 ≻xk
ik+2 for all k with 2 ≤ k ≤ n − 1, where

in+1 = i1.

• (Scarcity) There exist n−1 (possibly empty) mutually disjoint sets N1, . . . , Nn−1 ⊆
N \ {i1, . . . , in} such that N1 ⊆ SU(≽x1

, i2), Nk ⊆ SU(≽xk
, ik+2) for each k with

2≤ k ≤ n− 1, and |Nk|= qxk
− 1 for each k with 1≤ k ≤ n− 1.

As shown by Ergin (2002), when there is a generalized cycle, there must also be a

generalized cycle that has only three agents, which is simply referred to as a cycle.

Then the priority structure ≽ is acyclic if there does not exist any (generalized) cycle.

Next, consider a weak priority structure ≽. We will also fix this priority structure in

the rest of the paper. A natural and common solution in this case is to first break all the

ties randomly, then apply DA to the resulting strict priority structure, which gives rise to

a random allocation rule. An ordering of the agents can be drawn from the uniform dis-

tribution to break the ties at all the objects (single tie-breaking). Alternatively, for each

object an ordering can be drawn independently to break the ties at this object (multiple

tie-breaking). Pathak and Sethuraman (2011) introduced a more general method of

tie-breaking: we can partition all the objects into a collection of subsets, and conduct a

lottery draw independently for each subset.

Formally, an ordering of the agents is a one-to-one function σ : N → {1, . . . , |N |}.
Denote the set of all such orderings as 󲺞 , and X = {x1, . . . , x|X |}. A list of orderings

ς = (ςx1
, . . . ,ςx|X |) ∈ 󲺞 |X | transforms ≽ into a strict priority structure ≽ς: for all i, j ∈

N and x ∈ X , i ≻ςx j if i ≻x j, or, i ∼x j and ςx(i) < ςx( j). Let f DA(ς, R) denote

the deterministic allocation obtained from applying DA to ≽ς and R. Given R, and

17He further shows that DA is consistent, or group strategy-proof, if and only if ≽ is acyclic.
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a partition 󲺟 = {X1, . . . , Xk} of X , DA with 󲺟 -partitioned tie-breaking selects the

random allocation f DA-󲺟 (R), where for all i ∈ N and x ∈ X̄ ,

f DA-󲺟
i x (R) =

1
(|N |!)k
󲷲󲷲 󲷮ς : ςy = ςz if y, z ∈ X l for some l = 1, . . . , k, f DA

i (ς, R) = x
󲷯 󲷲󲷲.

If |󲺟 | = |X |, then f DA-󲺟 = f DA-MTB is DA with multiple tie-breaking (DA-MTB). If

󲺟 = {X }, then f DA-󲺟 = f DA-STB is DA with single tie-breaking (DA-STB). We will mostly

focus on DA-STB. So, for simplicity, denote ˜󲺞 |X | =
󲷮
ς ∈ 󲺞 |X | : ςx = ςy for all x , y ∈ X

󲷯
.

In the special case of strict priorities, the use of DA is strongly justified: it is the only

stable and strategy-proof rule (Alcalde and Barberà, 1994); it is agent-optimal stable,

and hence stability-constrained efficient. In contrast, under weak priorities, there is

no such support for DA-STB. First, there is a large class of symmetric, ex-post stable

and strategy-proof random allocation rules. For instance, it is easy to see that DA with

any partitioned tie-breaking belongs to this class. Second, as shown in Erdil and Er-

gin (2008), tie-breaking could induce further efficiency loss: for some ς ∈ ˜󲺞 |X | and R,

f DA(ς, R) may be Pareto dominated by another stable deterministic allocation. There-

fore, DA-STB may not be even stability-constrained efficient ex-post. Formally, given R,

µ ∈ 󲺓 is constrained efficient if it is stable and cannot be Pareto dominated by any

stable deterministic allocation. A random allocation M is ex-post constrained efficient

if some lottery λ induces M and each µ ∈ 󲺢 (λ) is constrained efficient.

Example 1. Suppose that N = {1, 2, 3}, X = {x , y} and qx = qy = 1. The priority

structure ≽ and preference profile R are given as follows.

x : 1≻x 2∼x 3

y : 1∼y 2∼y 3

1 : y, x ,󲅭
2 : x ,󲅭
3 : x , y,󲅭

If (σ(1),σ(2),σ(3)) = (3, 1, 2) and ςx = ςy = σ, then f DA
1 (ς, R) = x . Hence f DA-STB

1x (R)>
0. Let λ be any lottery that induces f DA-STB(R), then there exists µ ∈ 󲺢 (λ) such that

µ(1) = x . If µ is nonwasteful and individually rational, then µ(2) = 󲅭 and µ(3) = y .

µ is Pareto dominated by the stable deterministic allocation ν with (ν(1),ν(2),ν(3)) =
(y,󲅭, x). Therefore, DA-STB is not ex-post constrained efficient.

In this example, when the ties are broken using ς, a rejection cycle emerges in DA: in

the first step, agent 2 is tentatively accepted and agent 3 is rejected by x; in the second
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step agent 3 displaces agent 1 at y; in the third step agent 1 displaces agent 2 at x .

This rejection cycle leads to efficiency loss, and a fairness issue as well. Under DA-STB

the tie at object x is broken in favor of agent 2 and agent 3 with equal probability. The

existence of such a rejection cycle implies that if the tie at object x is broken in favor of

agent 2, she may not get x in the end. But note that if the tie is broken in favor of agent

3, then agent 3 always gets x . Therefore, although these two agents have equal claim

to their common top choice, they will not be assigned this object with equal probability

under DA-STB. In fact, f DA-STB
2x (R) = 1

3 and f DA-STB
3x (R) = 1

2 .

Definition 1 Given R, an allocation M is symmetric at the top if for any i, j ∈ N and

x ∈ X such that U(Ri, x) = U(R j, x) = {x} and i ∼x j, we have Mi x = M j x .

An agent’s chance of receiving the best outcome is potentially an important measure

of her welfare. In the application of school choice, if a group of students consider a

certain school as their best choice and they are equally ranked by this school, then it

seems unfair to let some of them have better chances of being admitted than the others.

We can also define a stronger fairness notion in this regard: for every k ≥ 1, if two

agents have the same first k choices, and they have the same preferences and priorities

for these objects, then they are assigned each of these k objects with equal probability.

Definition 2 Given R, an allocation M is strongly symmetric if for any i, j ∈ N and

x ∈ X such that 󲅭 /∈ U(Ri, x) = U(R j, x), Ri|U(Ri ,x) = R j|U(Ri ,x) and i ∼y j for all y ∈
U(Ri, x), we have Mi y = M j y for all y ∈ U(Ri, x).

Strong symmetry implies symmetry at the top. It also implies symmetry for individ-

ually rational allocations. But there is no logical relation between symmetry at the top

and symmetry. Regarding the roles of these three notions, it is worth mentioning that

symmetry is a minimal requirement that we want a random allocation rule to always

satisfy, while the other two are desirable properties that may only be achieved under

some circumstances.

4 Results

We are first interested in characterizing the priority structures under which DA-STB

satisfies good efficiency or fairness properties. In Example 1, DA-STB is not ex-post
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constrained efficient or symmetric at the top because of the existence of a certain rejec-

tion cycle, which suggests that it fails to satisfy these two properties for similar reasons.

As will be formally stated in Theorem 1, it turns out that the priority domain in which

DA-STB is ex-post constrained efficient coincides with the one in which it is symmetric

at the top or strongly symmetric.18 This domain is defined by ruling out two types of

cycles involving ties.

Definition 3 A type-I cycle consists of n ≥ 3 distinct agents i1, . . . , in ∈ N and n − 1

distinct objects x1, . . . , xn−1 ∈ X such that the following conditions are satisfied:

• (Cycle) i1 ≻x1
i2 ∼x1

i3, and ik+1 ≽xk
ik+2 for all k with 2 ≤ k ≤ n − 1, where

in+1 = i1.

• (Scarcity) There exist n−1 (possibly empty) mutually disjoint sets N1, . . . , Nn−1 ⊆
N \ {i1, . . . , in} such that Nk ⊆ U(≽xk

, ik+2) and |Nk| = qxk
− 1 for each k with

1≤ k ≤ n− 1.19

A type-II cycle consists of distinct i, j, k ∈ N and x , y ∈ X such that the following

conditions are satisfied:

• (Cycle) i ∼x j ∼x k ≻y i.

• (Scarcity) There exist (possibly empty) disjoint sets Nx , Ny ⊆ N \{i, j, k} such that

Nx ⊆ U(≽x , i), Ny ⊆ U(≽y , i), |Nx |= qx − 1 and |Ny |= qy − 1.

The priority structure≽ is T-acyclic if there does not exist any type-I or type-II cycle.

In the proof of Theorem 1 below, we will show that a type-I cycle or a type-II cy-

cle will make a general class of rules—which includes DA-STB—fail to satisfy ex-post

constrained efficiency or symmetry at the top. To better understand the roles of these

two types of cycles for the specific rule, DA-STB, we next provide a characterization of

T-acyclicity that relates it to acyclicity from Ergin (2002).

Suppose that for some ς ∈ ˜󲺞 |X |, ≽ς has a generalized cycle, denoted as c, in which

i1 ≻ςx1
i2 ≻ςx1

i3, ik+1 ≻ςxk
ik+2 for k ∈ {2, . . . , n− 1}, in+1 = i1, and the scarcity condition

18Although strong symmetry is stronger than symmetry at the top, the allocation selected by DA-STB
is strongly symmetric for every preference profile if the allocation selected by it is symmetric at the top
for every preference profile.

19Unlike the case of a generalized cycle, when there is a type-I cycle, there may not be a type-I cycle
with only three agents.
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is satisfied by N1, . . . , Nn−1. We will also denote the object x1 in the generalized cycle c

as xc, and the two agents i2 and i3 as ic and jc respectively. Define a preference profile

Rc as follows.

Rc :

i1 : xn−1, x1,󲅭
i2 : x1,󲅭
ik : xk−2, xk−1,󲅭 for k = 3, . . . , n

i ∈ Nk : xk,󲅭 for k = 1, . . . , n− 1

In addition, any other agent’s first choice is 󲅭. Then, the generalized cycle c creates a

rejection cycle in DA so that, at f DA(ς, Rc), the agents i1, i3, . . . , in receive their second

choices, and they can perform Pareto-improving exchanges leading to the violation of

i2’s priority by i3 at ≽ςx1
. However, if i2 ∼x1

i3, such exchanges will not violate any pri-

ority under ≽. Therefore, breaking the tie between i2 and i3 using ς creates an artificial

stability constraint that induces welfare loss, and f DA(ς, Rc) is not constrained efficient

for (≽, Rc), which suggests that DA-STB is not ex-post constrained efficient. Further-

more, when the tie between i2 and i3 is broken in the other way, the previous rejection

cycle disappears, which suggests that the two agents do not receive their common top

choice x1 with equal probability under DA-STB.

Therefore, the absence of such generalized cycle in the strict priority structures re-

sulted from single tie-breaking is necessary for DA-STB to be ex-post constrained effi-

cient or symmetric at the top. In fact, it is equivalent to the absence of type-I and type-II

cycles:

Proposition 1. ≽ is T-acyclic if and only if for any ς ∈ ˜󲺞 |X |,≽ς does not have a generalized

cycle c such that ic ∼xc
jc.

Although T-acyclicity is satisfied by any strict priority structure, it imposes strong

restrictions on the variations of priority orderings that involve ties, which can be seen

from the next proposition. It says that when ≽ is T-acyclic, for an agent i and two

objects x and y , if there are at least qx +qy other agents who are ranked weakly higher

than i by x , and the priority class I(≽x , i) has at least three agents, then this priority

class is ranked in the same way by both x and y .

Proposition 2. Suppose that ≽ is T-acyclic. For any i ∈ N and x , y ∈ X , if |U(≽x , i)| ≥
qx + qy + 1 and |I(≽x , i)|≥ 3, then I(≽x , i) = I(≽y , i) and SU(≽x , i) = SU(≽y , i).
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This is similar to Theorem 2 in Ergin (2002), which shows that a strict priority

structure is acyclic if and only if the following is true: for any agent i and two objects

x and y , if there are at least qx + qy agents ranked higher than i by x , then the ranks

of i at x and y differ by at most one.

Proposition 2 implies that in practical applications with large priority classes, such

as school choice, T-acyclicity is very likely to be violated. In particular, by Proposition

2, T-acyclicity implies that if |N |> qx +qy for any two objects x and y , and some object

has at least three agents in its bottom priority class, then every object has the same

bottom priority class.

Remark 1. Our theoretical result does not answer the question that whether the violation

of T-acyclicity can actually lead to significant welfare loss in practice. When the random

allocation selected by DA-STB is not ex-post constrained efficient, it is possible that the

DA outcomes are in fact constrained efficient for most orderings used to break ties, i.e.,

constrained efficient outcomes may realize with sufficiently high probabilities under DA-

STB. On the other hand, when T-acyclicity is violated, DA-STB is still ex-post constrained

efficient for some preference profiles.

However, there have been strong evidence for the significant welfare loss under DA-STB

in practical school choice problems. Using simulations, Erdil and Ergin (2008) show that

DA-STB can be improved significantly through stable improvement cycles. Abdulkadiroğlu

et al. (2009) find that, when implementing DA-STB, none of the 250 random draws of the

student orderings leads to a constrained efficient outcome using the submitted preference

data from the NYC high school admissions in 2006-2007, and only 6% of the random

draws leads to constrained efficiency using the data of elementary school applicants in

Boston in 2006-2007.

Therefore, given the above discussions, it is also interesting to know that, when

T-acyclicity is not satisfied, whether there exists a reasonable rule that outperforms

DA-STB. For instance, if the priority structure is not T-acyclic, DA-STB is not ex-post

constrained efficient. Then in this case can we find a reasonable rule that is ex-post

constrained efficient? We will show that the answer is no, if a reasonable rule must

satisfy strategy-proofness, symmetry, as well as an additional and new fairness property

that deals with ties.

Recall that symmetry is also a fairness property that deals with ties. However, unlike

in house allocation, it is a weak requirement in priority-augmented allocation, since two
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agents can differ not only in their preferences but also in their priorities. For example, if

every two agents have different priority rankings at only one object (that is acceptable

to at least one of them), then symmetry does not impose any restriction and every

deterministic allocation is symmetric. As a result, we define the following new axiom,

which imposes restrictions on the allocation of the probability shares of each object

among the agents that are equally ranked by this object.

Definition 4 Given R, an allocation M is locally envy-free if there do not exist i, j ∈ N

and x ∈ X such that i ∼x j, Mi x = 1, M j x = 0 and
󰁓

y∈U(R j ,x)
M j y < 1.

In the special case of house allocation (i.e., i ∼x j for all i, j ∈ N and x ∈ X ), an

allocation is envy-free if for each agent i, her lottery first-order stochastically dominates

any other agent’s lottery, according to the preferences of i. This is clearly not an appro-

priate requirement in our model: if M j does not first-order stochastically dominate Mi

according to the preferences of j, then j’s (potential) envy may not be "justified" as i

may have higher priorities for certain objects. However, if j ≽x i for every x ∈ X with

Mi x > 0, then j’s envy is justified and should be eliminated. Local envy-freeness is then

defined by ruling out one of the most obvious types of such justified envy. Note that it

is hence a weak requirement. As we will use this axiom to prove impossibility results,

the weaker it is, the stronger the results are.

Remark 2. We can also naturally interpret local envy-freeness from the perspective of

lottery decompositions. It says that if j can potentially receive y, then it shall not be the

case that for any lottery λ that induces M, j weakly envies the object x that i receives (i.e.,

x Pj y) in all deterministic allocations in the support, i ∼x j, and j never receives x. In

addition, this interpretation motivates a stronger concept than local envy-freeness: given

R, we say that an allocation M is weakly envy-free if there do not exist i, j ∈ N and y ∈ X̄

such that for any lottery λ that induces M, µ( j) = y for some µ ∈ 󲺢 (λ), and for any

ν ∈ 󲺢 (λ), we have ν(i) ∈ X , ν(i)Pj y and j ≽ν(i) i. The main results in this paper still

hold if local envy-freeness is replaced with weak envy-freeness.20

In many instances local envy-freeness requires a rule to select an allocation that has

at least some amount of randomness: if two agents are ranked equally by an object

that they both desire, and there is only one copy of this object to be allocated to them,

20Notably, Lemma 1 below remains true if we use weak envy-freeness instead of local envy-freeness.
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then the rule cannot simply assign this copy to one agent in a deterministic way. Local

envy-freeness is satisfied by many common random allocation rules, including DA with

any partitioned tie-breaking.

Lemma 1 f DA-󲺟 is locally envy-free for any partition 󲺟 of X .

In house allocation, the two most studied random allocation rules, random serial

dictatorship (RSD)(Abdulkadiroğlu and Sönmez, 1998) and probabilistic serial rule (Bo-

gomolnaia and Moulin, 2001), are locally envy-free.21 Moreover, in allocation problems

with weak priorities, several recent studies propose random allocation rules that satisfy

new fairness axioms regarding ties in priorities. Local envy-freeness is implied by no

ex-ante discrimination from Kesten and Ünver (2015) as well as ordinal fairness from

Han (2022).22 23 Although there is no logical relation between local envy-freeness and

claimwise stability from Afacan (2018), the central claimwise stable rule constructed by

him, constrained probabilistic serial mechanism, is locally envy-free.24

We are ready to present the first main theorem.

Theorem 1 The following statements are equivalent:

(i) DA-STB is ex-post constrained efficient.

(ii) DA-STB is strongly symmetric.

(iii) There exists a strategy-proof, ex-post constrained efficient, symmetric and locally

envy-free rule.

(iv) There exists a strategy-proof, ex-post stable, symmetric at the top and locally envy-

free rule.

(v) ≽ is T-acyclic.

21In fact, the probabilistic serial rule satisfies the stronger notion of envy-freeness, while RSD, which
is a special case of DA-STB, is not envy-free.

22An allocation M has no ex-ante discrimination if for any i, j ∈ N and x ∈ X with i ∼x j,󰁓
y∈U(R j ,x)

M j y < 1 implies M j x ≥ Mi x . M is ordinally fair if for any i, j ∈ N and x ∈ X with i ∼x j,

Mi x > 0 implies
󰁓

y∈U(R j ,x)
M j y ≥
󰁓

y∈U(Ri ,x)
Mi y .

23Symmetry is also implied by both no ex-ante discrimination and ordinal fairness. In this paper we use
two fairness axioms regarding ties in priorities, symmetry and local envy-freeness. This is the weakest
set of axioms that we can identify to prove the impossibility results. Moreover, DA-STB does not satisfy
no ex-ante discrimination or ordinal fairness, even in the special case of house allocation.

24Afacan (2018) studies a more general model in which priorities are random. An allocation M is
claimwise stable if for any i, j ∈ N and x ∈ X , Mi x ≤ Pr(i ≻x j) +

󰁓
y∈SU(R j ,x)

M j y , where Pr(i ≻x j) is

the probability of i ≻x j. Our model can be embedded into his by setting Pr(i ≻x j) = 1
2 when i ∼x j.
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In the proof of Theorem 1 in Appendix A, we show that for a T-acyclic priority struc-

ture, DA-STB is ex-post constrained efficient and strongly symmetric. Then, given that

DA-STB is always strategy-proof, ex-post stable, symmetric and locally envy-free, we

finish the proof of the theorem by establishing two impossibility results: as long as the

priority structure is not T-acyclic, there does not exist a strategy-proof, ex-post con-

strained efficient, symmetric and locally envy-free rule, or a strategy-proof, ex-post sta-

ble, symmetric at the top and locally envy-free rule. Moreover, it can be easily seen

that symmetry at the top and strong symmetry are interchangeable in the statements in

Theorem 1.

As in almost all the previous studies on characterizations of priority structures, and

illustrated by Proposition 2, the condition we found on the priority structure can be

quite restrictive (when there are ties). However, the more restrictive this condition

is, the stronger our impossibility results are. One may argue that in some practical

applications T-acyclicity is most likely not satisfied. When it is not satisfied, DA-STB is

not ex-post constrained efficient. Then our impossibility results indicate that this is not

only a drawback of DA-STB: any strategy-proof, symmetric and locally envy-free rule is

not ex-post constrained efficient. We postpone more detailed and further discussions

of the implications of Theorem 1 to Section 5.

Next, to find the priority structures under which DA-STB is ex-post efficient, we

only need to complement T-acyclicity with the strong acyclicity condition from Ehlers

and Erdil (2010). A weak cycle consists of distinct i, j, k ∈ N and x , y ∈ X such that

the following conditions are satisfied: (Cycle) i ≽x j ≻x k ≽y i; (Scarcity) there exist

(possibly empty) disjoint sets Nx , Ny ⊆ N \ {i, j, k} such that Nx ⊆ U(≽x , j), Ny ⊆ U(≽y

, i), |Nx | = qx − 1 and |Ny | = qy − 1. ≽ is strongly acyclic if there does not exist any

weak cycle.

Definition 5 The priority structure ≽ is strongly T-acyclic if it is T-acyclic and strongly

acyclic.

Ehlers and Erdil (2010) show that every constrained efficient deterministic alloca-

tion under any preference profile is efficient if and only if ≽ is strongly acyclic. There-

fore, DA-STB is ex-post stable-and-efficient if≽ is strongly T-acyclic. The other direction

can also be established, through a general (im)possibility result similar to those in The-

orem 1.

Theorem 2 The following statements are equivalent:
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(i) DA-STB is ex-post stable-and-efficient.

(ii) There exists a strategy-proof, ex-post stable-and-efficient, symmetric and locally envy-

free rule.

(iii) ≽ is strongly T-acyclic.25

Characterization results similar to Proposition 1 can also be obtained for strong

acyclicity and strong T-acyclicity. First, there is an interesting connection between

strong acyclicity and T-acyclicity: it is straightforward to show that ≽ is strongly acyclic

if and only if for any ς ∈ ˜󲺞 |X |, ≽ς does not have a cycle c such that ic ≻xc
jc.

26 Note

that if ≽ς has a cycle c for some ς ∈ ˜󲺞 |X |, then either ic ∼xc
jc or ic ≻xc

jc. As discussed

before, this cycle leads to the constrained inefficiency of f DA(ς, Rc) for (≽, Rc) in the

former case. In the latter case, f DA(ς, Rc) is constrained efficient for (≽, Rc), but it is not

efficient. Hence, there is a constrained efficient deterministic allocation that is not effi-

cient. It turns out that ruling out all such cycles in the strict priority structures resulted

from single tie-breaking is equivalent to strong acyclicity. Then, combining our charac-

terizations of T-acyclicity and strong acyclicity, it can be easily seen that ≽ is strongly

T-acyclic if and only if for any ς ∈ ˜󲺞 |X |, ≽ς is acyclic.

Three impossibility results are established in the proofs of Theorem 1 and Theorem

2. In Appendix B, we show that the axioms involved are generally independent, while

some stronger impossibility results can be obtained in the special case of one-to-one

matching, as explained in the following remark.

Remark 3. Theorems 1 and 2 include the following two parallel results. First, if ≽ is not

T-acyclic, there does not exist a strategy-proof, ex-post constrained efficient, symmetric and

locally envy-free rule. Second, if ≽ is not strongly T-acyclic, there does not exist a strategy-

proof, ex-post stable-and-efficient, symmetric and locally envy-free rule. In Appendix B, it

is shown that they can be strengthened under unit-capacities. Assume qx = 1 for all x ∈ X ,

then we have:

• If≽ is not T-acyclic, there does not exist a strategy-proof, ex-post constrained efficient

and locally envy-free rule.

25Note that, when full efficiency is desired in addition to stability, we want the rule to satisfy ex-post
stability-and-efficiency, rather than ex-post stability plus ex-post efficiency. That being said, it can be
shown that in the statement (i) of Theorem 2, ex-post stability-and-efficiency can be replaced by ex-post
efficiency. Thus, DA-STB is an ex-post stable-and-efficient rule if and only if it is an ex-post efficient (and
ex-post stable) rule.

26In this statement, "cycle" can also be replaced with "generalized cycle".
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• If ≽ is not strongly T-acyclic, there does not exist an ex-post stable-and-efficient, and

locally envy-free rule.27

Therefore, under unit-capacities, symmetry can be dropped from statement (iii) in Theo-

rem 1, and both symmetry and strategy-proofness can be dropped from statement (ii) in

Theorem 2.

5 Discussion

We conclude by discussing the main implications of Theorem 1 and Theorem 2.

First, the necessary and sufficient conditions for DA-STB to satisfy several desirable

efficiency and fairness axioms are identified. While previous studies on characteriza-

tions of priority domains all focus on the deterministic setting, we study one of the

most popular random allocation rules. In addition, our results also have implications

for deterministic rules. The proof of Theorem 1 indicates that f DA(ς, ·) is a constrained

efficient deterministic rule for all ς ∈ ˜󲺞 |X | if and only if ≽ is T-acyclic. Then it follows

that f DA(ς, ·) is an efficient rule for all ς ∈ ˜󲺞 |X | if and only if ≽ is strongly T-acyclic.28

Moreover, Abdulkadiroğlu et al. (2009) show that any constrained efficient allocation

can be selected by DA with some fixed single tie-breaking. Therefore, under any pref-

erence profile, DA with fixed single tie-breaking characterizes the set of constrained

efficient allocations, i.e., for any R the set of constrained efficient allocations is equal

to
󲷮

f DA(ς, R) : ς ∈ ˜󲺞 |X |
󲷯
, if and only if ≽ is T-acyclic. Similarly, under any preference

profile DA with fixed single tie-breaking characterizes the set of stable and efficient al-

locations if and only if ≽ is strongly T-acyclic.29 Finally, for the general many-to-one

allocation under weak priorities, it is still unknown when a strategy-proof, stable and

efficient rule exists, and when a strategy-proof and constrained efficient rule exists.30

Our results provide some partial answers by restricting attention to random allocation

rules that are symmetric and locally envy-free.

Second, despite its popularity in market design applications, a theoretical support

27We actually prove these two results under a slightly weaker assumption than unit-capacities, which
ensures that every type-I, type-II and weak cycle only involves objects with unit-capacities.

28In a related study, Ishida (2019) characterizes the priority structures under which applying DA after
the ties in priorities are resolved in any way results in an efficient rule.

29This implies a well-known result that in a house allocation problem, serial dictatorships characterize
the set of efficient allocations (Svensson, 1994).

30Han (2018) and Ehlers and Westkamp (2018) answer these questions in the one-to-one setting,
respectively.
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for the use of DA-STB, beyond the fact that it is strategy-proof, ex-post stable and sym-

metric, has been largely elusive, and this paper attempts to fill this gap. If we take

strategy-proofness, ex-post stability, symmetry and local envy-freeness as the minimum

requirements of a desirable random allocation rule, then ex-post constrained efficiency,

ex-post stability-and-efficiency, symmetry at the top or strong symmetry can be achieved

if and only if it can be achieved by DA-STB. Therefore, a market designer who values,

for instance, constrained efficiency, has a stronger reason to use DA-STB without exam-

ining the actual priority structure, since an ex-post constrained efficient rule satisfying

those minimum requirements does not exist if DA-STB is not ex-post constrained effi-

cient. To present the theoretical foundations that we provide for DA-STB more clearly,

we give additional interpretations in the following remark.

Remark 4. Recall that a rule was defined for a given priority structure. Now, we abuse

the notations slightly and define a rule as a function that selects an allocation for every

pair (≽, R). Then we say that a rule is reasonable if it is strategy-proof, symmetric and

locally envy-free (for every priority structure ≽).31 Let 󲺓 denote the collection of all the

possible priority structures. Our results imply that, for any reasonable rule f , if D =
{≽∈ 󲺓 : f DA-STB(≽, R) is ex-post constrained efficient for all R} and D′ = {≽∈ 󲺓 : f (≽
, R) is ex-post constrained efficient for all R}, then D′ ⊆ D. That is, DA-STB satisfies ex-

post constrained efficiency in a weakly larger priority domain than any other reasonable

rule. Ex-post constrained efficiency can be replaced with ex-post stability-and-efficiency in

the above statement. It can also be replaced with symmetry at the top or strong symmetry

if a reasonable rule is referred to a strategy-proof, ex-post stable and locally envy-free rule.

For a given priority structure in our characterized priority domains, there can be

other rules that perform as well as DA-STB. In particular, when ≽ is T-acyclic, DA-STB

may not be the unique rule that satisfies all the axioms in (iii) and (iv) of Theorem

1. We present two representative examples to illustrate that such non-uniqueness is

widespread. First, in the special case of house allocation, DA-STB is reduced to RSD.

When |N | ≥ 4, |X | ≥ 3, and qx = 1 for all x ∈ X , Erdil (2014) constructs a strategy-

proof, ex-post efficient and symmetric rule that is different from RSD. In our many-to-

one setting, based on his construction, it can be shown that if there are three distinct

objects x , y, z such that |N | > qx + qy + qz, then there exists a strategy-proof, ex-post

31That is, for every (≽, R), f (≽, R) is symmetric and locally envy-free. Moreover, for every (≽, R), i ∈ N
and R′i , fi(≽, R) first-order stochastically dominates fi(≽, (R′i , R−i)) according to Ri .
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efficient, strongly symmetric and locally envy-free rule that is not RSD.32 Second, the

following example shows that even a very small amount of ties in the priority structure

can lead to non-uniqueness.

Example 2. Suppose that |N | ≥ 3, |X | ≥ 2, and qx = 1 for all x ∈ X . Denote N =
{1, 2, . . . , |N |}, and let x , y ∈ X be two distinct objects. The priority structure ≽ is

defined such that for all i, j ∈ N \ {1, 2, 3} with i > j and z ∈ X \ {x , y} we have

x : i ≻x j ≻x 3∼x 2≻x 1

y : i ≻y j ≻y 3∼y 1≻y 2

z : i ≻z j ≻z 3≻z 2≻z 1

The priority structure has only two ties and it is T-acyclic. In this case, DA-STB and

DA-MTB are not equivalent. To see this, consider any R such that every i > 3 ranks 󲅭 at

the top, and the preferences of 1, 2 and 3 are as follows:

1 : y,󲅭
2 : x ,󲅭
3 : y, x ,󲅭

Then f DA-STB
3x (R) = 1

6 , and f DA-MTB
3x (R) = 1

4 . However, it is easy to check that DA-MTB is

also strategy-proof, ex-post constrained efficient, strongly symmetric and locally envy-

free under ≽.

In terms of the properties in (iii) and (iv) of Theorem 1, DA-STB is unique in the

extreme case of strict priorities, and generally non-unique in the other extreme case of

house allocation. Therefore, starting from a strict priority structure, we can add ties

into it step by step (in a way that preserves T-acyclicity) to make the priority struc-

ture "weaker", until we lose uniqueness. Similarly, starting from the house allocation

structure, we can break ties step by step to make it "stricter", and obtain uniqueness at

some point. However, it is worth mentioning that generally a "weaker" priority structure

does not necessarily indicate that non-uniqueness is more likely: in Example 2, if we

add more ties to make 1, 2 and 3 equally ranked by each object, then DA-STB becomes

the unique strategy-proof, ex-post constrained efficient and symmetric rule.33

32Such a rule is constructed based on RSD, by assigning more probability shares of an object in some
particular preference profiles for which RSD is wasteful.

33To see that such rule is unique, first note that the agents N \{1, 2, 3} always sequentially choose their
best available objects in the order of their priorities, due to ex-post stability. Then, the rule allocates the
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In the end, although DA-STB is not the only rule that can be justified using our

results, a different and systematic rule that can also be supported by the same argu-

ments is not known yet. In other words, other existing rules for priority-augmented

allocation cannot be justified in the same way. In particular, DA with any other parti-

tioned tie-breaking does not always satisfy the corresponding desirable efficiency and

fairness properties whenever DA-STB does. For instance, we modify the priority struc-

ture in Example 1 such that all the three agents are ranked equally by both x and y . If

(ςx(1),ςx(2),ςx(3)) = (1, 2, 3) and (ςy(1),ςy(2),ςy(3)) = (3, 1, 2), then f DA
1 (ς, R) = x

and thus f DA-MTB
1x (R) > 0. This implies that DA-MTB is not ex-post constrained efficient

under this strongly T-acyclic priority structure. Moreover, it is not symmetric at the top:

f DA-MTB
2x (R) = 5

12 and f DA-MTB
3x (R) = 1

2 . Intuitively, compared to single tie-breaking, other

tie-breaking methods can lead to more rejection cycles in DA, creating additional issues

of efficiency and fairness.

Appendix A: Proofs

Proof of Proposition 1

We start by proving a result regarding longer type-II cycles, which will also be useful in

the proofs of other results in the paper. A generalized type-II cycle consists of n ≥ 3

distinct agents i1, . . . , in ∈ N and n − 1 distinct objects x1, . . . , xn−1 ∈ X such that the

following conditions are satisfied: (Cycle) i1 ∼x1
i2 ∼x1

i3, ik+1 ≽xk
ik+2 for all k with

2≤ k ≤ n−1, and ik+1 ≻xk
ik+2 for some k with 2≤ k ≤ n−1, where in+1 = i1; (Scarcity)

there exist n− 1 (possibly empty) mutually disjoint sets N1, . . . , Nn−1 ⊆ N \ {i1, . . . , in}
such that Nk ⊆ U(≽xk

, ik+2) and |Nk|= qxk
− 1 for each k with 1≤ k ≤ n− 1.

Claim 1. If there is a generalized type-II cycle, there is a type-I cycle or a type-II cycle.

Proof. Suppose that there is a generalized type-II cycle. Consider one of the shortest

generalized type-II cycles. Assume that it consists of n≥ 3 distinct agents i1, . . . , in and

n− 1 distinct objects x1, . . . , xn−1, which satisfy the cycle and scarcity conditions in the

remaining objects to {1, 2, 3} in a strategy-proof, ex-post efficient and symmetric way. This implies that
the rule allocates these objects in the same way as RSD does, by extending the characterization of RSD
in the case of three agents by Bogomolnaia and Moulin (2001).
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definition above. If n = 3, then this is a type-II cycle. Suppose that n ≥ 4 and consider

the following three possible cases.

Case 1. i1 ∕∼xn−1
i2 or i1 ∕∼xn−1

i3. The three agents i1, i2, i3 and the two objects x1, xn−1

constitute a shorter generalized type-II cycle. So this case is not possible.

Case 2. in ≻xn−1
i1 ∼xn−1

i2 ∼xn−1
i3. Since in ≻xn−1

i1 ∼xn−1
i2, ik+1 ≽xk

ik+2 for

k = 1, . . . , n−2, and it is easy to check that the scarcity condition is satisfied, the agents

in, i1, . . . , in−1 and the objects xn−1, x1, . . . , xn−2 constitute a type-I cycle.

Case 3. in ∼xn−1
i1 ∼xn−1

i2 ∼xn−1
i3. First, in ∼xn−1

i1 implies that for some k with

2 ≤ k ≤ n− 2, ik+1 ≻xk
ik+2. Then, we have in ∼xn−1

i1 ∼xn−1
i3, and ik+1 ≽xk

ik+2 for all

k with 2 ≤ k ≤ n − 2. The scarcity condition can also be easily verified, so a shorter

generalized type-II cycle is found, which consists of n − 1 agents in, i1, i3, . . . , in−1 and

n− 2 objects xn−1, x2, . . . , xn−2. Hence this case is not possible.

"only if" part. Suppose that for some ς ∈ ˜󲺞 |X |, ≽ς has a generalized cycle c that consists

of distinct i1, . . . , in ∈ N , n≥ 3, and distinct x1, . . . , xn−1 ∈ X such that: (1) i1 ≻ςx1
i2 ≻ςx1

i3, i2 ∼x1
i3, and ik+1 ≻ςxk

ik+2 for all k with 2≤ k ≤ n−1, where in+1 = i1; (2) there exist

n − 1 mutually disjoint sets N1, . . . , Nn−1 ⊆ N \ {i1, . . . , in} such that N1 ⊆ SU(≽ςx1
, i2),

Nk ⊆ SU(≽ςxk
, ik+2) for each k with 2 ≤ k ≤ n − 1, and |Nk| = qxk

− 1 for each k with

1 ≤ k ≤ n− 1. Note that i1 ≽x1
i2. If i1 ≻x1

i2, then c becomes a type-I cycle in ≽, and

thus ≽ is not T-acyclic. If i1 ∼x1
i2 ∼x1

i3, then ς ∈ ˜󲺞 |X | implies ik+1 ≻xk
ik+2 for some

k ∈ {2, . . . , n − 1}. Hence c is a generalized type-II cycle in ≽. By Claim 1, ≽ is not

T-acyclic.

"if" part. Suppose that ≽ is not T-acyclic.

Case 1: ≽ has a type-I cycle. Let this type-I cycle consist of distinct i1, . . . , in ∈ N ,

n ≥ 3, and distinct x1, . . . , xn−1 ∈ X such that: (1) i1 ≻x1
i2 ∼x1

i3, and ik+1 ≽xk
ik+2 for

all k with 2 ≤ k ≤ n − 1, where in+1 = i1; (2) there exist n − 1 mutually disjoint sets

N1, . . . , Nn−1 ⊆ N \ {i1, . . . , in} such that Nk ⊆ U(≽xk
, ik+2) and |Nk| = qxk

− 1 for each k

with 1 ≤ k ≤ n− 1. Define ς such that ςx( j) < ςx(i2) < ςx(i3) . . . < ςx(in) < ςx(i1) for

all x ∈ X and j ∈ ∪n−1
k=1Nk. Then, in ≽ς the above type-I cycle becomes a generalized

cycle with i2 ∼x1
i3.

Case 2: ≽ has a type-II cycle. Let this type-II cycle consist of distinct i, j, k ∈ N and

x , y ∈ X such that: (1) i ∼x j ∼x k ≻y i; (2) there exist disjoint Nx , Ny ⊆ N \ {i, j, k}
such that Nx ⊆ U(≽x , i), Ny ⊆ U(≽y , i), |Nx | = qx − 1 and |Ny | = qy − 1. Define ς such
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that ςz(l) < ςz(i) < ςz( j) < ςz(k) for all z ∈ X and l ∈ Nx ∪ Ny . Then the above type-II

cycle becomes a cycle in ≽ς with j ∼x k.

Proof of Proposition 2

Suppose that ≽ is T-acyclic. Consider any i ∈ N and x , y ∈ X such that |U(≽x , i)| ≥
qx + qy + 1 and |I(≽x , i)| ≥ 3. We first show that U(≽x , i) ⊆ U(≽y , i). Assume to the

contrary, U(≽x , i)\U(≽y , i) ∕= 󲅭. Pick j ∈ U(≽x , i) such that k ≽y j for all k ∈ U(≽x , i).
Then i ≻y j. As |I(≽x , i)| ≥ 3, we can find k ∈ I(≽x , i) such that i, j and k are distinct.

Then, we have a type-I cycle with j ≻x k ∼x i ≻y j if j ≻x i, and a type-II cycle with

j ∼x k ∼x i ≻y j if j ∼x i. To see that the scarcity condition is satisfied in both cases,

note that |U(≽x , i) \ {i, j, k}| ≥ qx + qy − 2, and l ≽y j for all l ∈ U(≽x , i) \ {i, j, k}
by the initial choice of j. It follows that there exist disjoint Nx , Ny ⊆ U(≽x , i) \ {i, j, k}
such that Nx ⊆ U(≽x , i), Ny ⊆ U(≽y , j), |Nx | = qx − 1 and |Ny | = qy − 1. Therefore, a

contradiction is reached, and we have U(≽x , i) ⊆ U(≽y , i).
By the same arguments as before, it can be easily seen that U(≽x , j) ⊆ U(≽y , j) for

all j ∈ I(≽x , i). This indicates that I(≽x , i) ⊆ I(≽y , i).
Given that |U(≽y , i)| ≥ |U(≽x , i)| ≥ qx + qy + 1 and |I(≽y , i)| ≥ |I(≽x , i)| ≥ 3,

by switching the roles of x and y in all the above arguments, it can be shown that

U(≽y , i) ⊆ U(≽x , i) and I(≽y , i) ⊆ I(≽x , i). Therefore, we have U(≽y , i) = U(≽x , i)
and I(≽y , i) = I(≽x , i), which imply SU(≽y , i) = SU(≽x , i).

Proof of Lemma 1

Assume to the contrary, there exist a partition 󲺟 of X , R, i, j ∈ N and x ∈ X such

that i ∼x j, f DA-󲺟
i x (R) = 1, f DA-󲺟

j x (R) = 0 and
󰁓

y∈U(R j ,x)
f DA-󲺟

j y (R) < 1. Then for some

ς ∈ 󲺞 |X | with ςy = ςz for all X ′ ∈ 󲺟 and y, z ∈ X ′, f DA
i (ς, R) = x and x Pj f

DA
j (ς, R). By

the stability of DA, ςx(i) < ςx( j). Next, we adjust the ordering ςx by moving i down

such that i is below j. That is, consider some ς′x ∈ 󲺞 such that ς′x( j) < ς
′
x(i), and for

all k ∈ N \ {i} and l ∈ N , ς′x(k) < ς
′
x(l) if ςx(k) < ςx(l). Let ς′ = (ς′x ,ς−x). We want

to show that f DA
i (ς

′, R) ∕= x . Suppose that this is not true. Then by the stability of DA,

f DA
j (ς

′, R)R j x . Consider any k, l ∈ N such that f DA
l (ς

′, R)Pk f DA
k (ς

′, R). Let f DA
l (ς

′, R) = y .

By the stability of DA, l ≻ς′y k. If y ∕= x , then l ≻ςy k since ςy = ς′y . If y = x , then k ∕= i

and the construction of ς′x implies that we also have l ≻ςy k. So f DA(ς′, R) respects

the priorities in the problem (≽ς, R). It is also individually rational and nonwasteful

25



for this problem since it is so for (≽ς′ , R). Therefore, f DA(ς′, R) is stable for (≽ς, R).
But f DA

j (ς
′, R)R j x Pj f

DA
j (ς, R), contradicting to the fact that DA is agent-optimal stable.

Hence, f DA
i (ς

′, R) ∕= x .

Balinski and Sönmez (1999) show that DA respects improvements. That is, if an

agent’s priority ranking at each object weakly increases, she will receive a weakly better

object under DA. From ≽ς to ≽ς′ , agent i’s ranking at each object weakly decreases, so

f DA
i (ς

′, R) ∕= x implies x Pi f
DA

i (ς
′, R). Suppose that x ∈ X ′ ∈ 󲺟 . Construct ς′′ such that

for all z ∈ X , ς′′z = ς
′
x if z ∈ X ′, and ς′′z = ςz otherwise. From≽ς′ to≽ς′′ , agent i’s ranking

at each object weakly decreases again, so x Pi f
DA

i (ς
′′, R). This contradicts to the initial

assumption of f DA-󲺟
i x (R) = 1.

Proof of Theorem 1

We first show (v) ⇒ (i), then (v) ⇒ (ii). It is already known that (i) ⇒ (iii) and

(ii)⇒ (iv). So we finish the proof by showing that (iii)⇒ (v) and (iv)⇒ (v).

Proof of (v) ⇒ (i). Suppose that there exist R and ς ∈ ˜󲺞 |X | such that f DA(ς, R) = µ is

not constrained efficient for the problem (≽, R). Then, by Erdil and Ergin (2008), there

exists a stable improvement cycle. That is, there exists a sequence of n≥ 2 distinct agents

(i1, . . . , in) such that for all k ∈ {1, . . . , n}, µ(ik) ∈ X , µ(ik+1)Pikµ(ik), and ik ≽µ(ik+1) i for

all i with µ(ik+1)Piµ(i), where in+1 = i1. Without loss of generality, assume that this

is one of the shortest stable improvement cycles, and among the shortest ones this

cycle minimizes the sum of the involved agents’ orderings. That is, in every stable

improvement cycle there are at least n agents, and if (i′1, . . . , i′n) is a stable improvement

cycle, then
󰁓n

k=1σ(ik) ≤
󰁓n

k=1σ(i
′
k), where σ = ςx for all x ∈ X . The objects involved

in the cycle (i1, . . . , in) must be distinct. To see this, consider any k, k′ ∈ {1, . . . , n} such

that k′ > k. If k′ − k = 1, then µ(ik′) ∕= µ(ik) since µ(ik′)Pikµ(ik). If k′ − k > 1, then

µ(ik′) = µ(ik) implies that (ik, . . . , ik′−1) is a shorter stable improvement cycle.

Define µ′ as follows: µ′(i) = µ(i) if i ∕∈ {i1, . . . , in}; µ′(ik) = µ(ik+1) for all k ∈
{1, . . . , n}. Then µ′ is stable for (≽, R) and it Pareto dominates µ= f DA(ς, R). It follows

that µ′ is not stable for (≽ς, R). Clearly µ′ is individually rational and nonwasteful

for (≽ς, R). Hence, there exist i, j ∈ N such that j ≻ς
µ′(i) i and µ′(i)Pjµ

′( j). Then

µ′(i)Pjµ( j). By the stability of µ for (≽ς, R), it must be the case that µ(i) ∕= µ′(i).
So i ∈ {i1, . . . , in}. Without loss of generality, let i = i1, then µ′(i) = µ(i2). Since

µ(i2)Pjµ( j), by the definition of stable improvement cycles, i1 ≽µ(i2) j. Then it follows
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from j ≻ς
µ(i2)

i1 that i1 ∼µ(i2) j and σ( j)< σ(i1).
Next, we show that µ( j) ∕= µ(ik) for any k ∈ {1, . . . , n}. Given that µ(i2)Pjµ( j),

µ( j) ∕= µ(i2). Suppose µ( j) = µ(i1). Then j /∈ {i2, . . . , in} as µ(i1), . . . ,µ(in) are distinct.

Since i1 ∼µ(i2) j and µ(i2)Pjµ( j), we can replace i1 with j and obtain another stable

improvement cycle, ( j, i2, . . . , in), with the same length. However, a contradiction is

reached since the sum of the involved agents’ orderings is smaller in the new stable

improvement cycle:
󰁓n

k=1σ(ik) > σ( j) +
󰁓n

k=2σ(ik). Finally, suppose that n ≥ 3 and

µ( j) = µ(ik) for some k with 3≤ k ≤ n. In this case, j /∈ {i2, . . . , ik−1}, and ( j, i2, . . . , ik−1)
is a stable improvement cycle with less than n agents, contradiction.

Since µ is stable for (≽, R) and µ(ik+1)Pikµ(ik) for all k ∈ {1, . . . , n}, ik+1 ≽µ(ik+1) ik for

all k. For each k ∈ {1, . . . , n}, let Nk = {l ∈ N : µ(l) = µ(ik), l ∕= ik}. Then by the stability

of µ again, Nk+1 ⊆ U(≽µ(ik+1), ik) and |Nk+1| = qµ(ik+1) − 1 for all k ∈ {1, . . . , n}, where

Nn+1 = N1. It is obvious that N1, . . . , Nn are mutually disjoint, and Nk ⊆ N \ {i1, . . . , in}
for each k ∈ {1, . . . , n}. Given that µ( j) ∕= µ(ik) for any k, j /∈ {i1, . . . , in} and j /∈ Nk for

any k.

In sum, we have n+1 distinct agents j, i1, . . . , in and n distinct objects µ(i1), . . . ,µ(in)
such that: (1) i2 ≽µ(i2) j ∼µ(i2) i1, ik+1 ≽µ(ik+1) ik for k = n, . . . , 2; (2) there exist n

(possibly empty) mutually disjoint sets N1, . . . , Nn ⊆ N \ { j, i1, . . . , in} such that Nk+1 ⊆
U(≽µ(ik+1), ik) and |Nk+1| = qµ(ik+1) − 1 for all k ∈ {1, . . . , n}. This is a type-I cycle if

i2 ≻µ(i2) i1. If i2 ∼µ(i2) i1, then ik+1 ≻µ(ik+1) ik for some k ∈ {2, . . . , n}, because otherwise

the stability of µ for (≽ς, R) implies σ(i1) > σ(i2) > . . . > σ(in) > σ(i1). Hence, in the

case of i2 ∼µ(i2) i1 we obtain a generalized type-II cycle. By Claim 1, there exists a type-I

cycle or a type-II cycle.

Therefore, if ≽ is T-acyclic, then for any R′ and any ς′ ∈ ˜󲺞 |X |, f DA(ς′, R′) is con-

strained efficient. It follows that DA-STB is an ex-post constrained efficient rule when

≽ is T-acyclic.

Proof of (v) ⇒ (ii). Suppose that ≽ is T-acyclic. Consider any i, j ∈ N , x̄ ∈ X and R

such that 󲅭 /∈ U(Ri, x̄) = U(R j, x̄), Ri|U(Ri , x̄) = R j|U(Ri , x̄) and i ∼x j for all x ∈ U(Ri, x̄).
For each ς ∈ ˜󲺞 |X |, let ς′ denote the list of orderings obtained by switching the positions

of i and j, i.e., for all x ∈ X , ς′x(i) = ςx( j), ς′x( j) = ςx(i), and ς′x(k) = ςx(k) for all

k ∈ N \ {i, j}. The proof of this direction is mainly built on the following result.

Claim 2. For any x ∈ U(Ri, x̄) and ς ∈ ˜󲺞 |X |, if f DA
i (ς, R) = x and x Pj f

DA
j (ς, R), then

f DA
j (ς

′, R)R j x.
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Proof. Assume to the contrary, there exist x ∈ U(Ri, x̄) and ς ∈ ˜󲺞 |X | such that f DA
i (ς, R) =

x , x Pj f
DA
j (ς, R), and x Pj f

DA
j (ς

′, R). Let f DA(ς, R) = µ and f DA(ς′, R) = µ′. Since µ is

stable for (≽ς, R), ςx(i) < ςx( j). Then ς′x( j) < ς
′
x(i). Since µ′ is stable for (≽ς′ , R),

U(Ri, x) = U(R j, x) and i ∼y j for all y ∈ U(Ri, x), we have x Piµ
′(i). Consider two

possible cases.

Case 1: µ( j)R jµ
′( j).

Define a function ν : N → X̄ such that for all k ∈ N , ν(k) = µ(k) if µ(k)Rkµ
′(k), and

ν(k) = µ′(k) if µ′(k)Pkµ(k). Then ν(i) = x and ν( j) = µ( j). We first show that ν

is a deterministic allocation, i.e., no object is over-assigned. Suppose that there exists

k ∈ ν−1(x) \ {i} such that µ′(k) = x . Then k ≻ς′x j, since x Pjµ
′( j) and µ′ is stable

for (≽ς′ , R). Because i and j’s priority rankings at x are switched as we move from

≽ς′ to ≽ς, it follows that k ≻ςx i. Then µ(i) = x and the stability of µ for (≽ς, R)
imply µ(k)Rk x . Then µ(k) = x since ν(k) = x . Therefore, ν−1(x) ⊆ µ−1(x) and

|ν−1(x)|≤ |µ−1(x)|≤ qx . Next, consider any y ∈ X \{x}. y is clearly not over-assigned

if ν−1(y) ⊆ µ−1(y). Suppose that for some l ∈ ν−1(y), µ(l) ∕= y . Then µ′(l) = y and

yPlµ(l). If there exists m ∈ ν−1(y) \ {l} such that µ(m) = y , then by the stability of

µ for (≽ς, R), m ≻ςy l. We have l /∈ {i, j} since µ′(l)Plµ(l), and m ∕= i since µ(i) = x .

Then ς′y(l) = ςy(l), and ς′y(m) ≤ ςy(m). It follows that m ≻ς′y l. Since µ′ is stable

for (≽ς′ , R) and µ′(l) = y , µ′(m)Rm y . Given that m ∈ ν−1(y), µ′(m) = y . Therefore,

v−1(y) ⊆ (µ′)−1(y) and y is not over-assigned. This finishes the proof of the fact that ν

is a deterministic allocation.

Consider the problem (≽, R). By the construction, ν Pareto dominates the stable

deterministic allocation µ′. Then ν is individually rational and nonwasteful.34 If ν

does not respect the priorities, then there exist some k, l ∈ N such that k ≻ν(l) l and

ν(l)Pkν(k). For someµ′′ ∈ {µ,µ′}, µ′′(l) = ν(l). Then k ≻µ′′(l) l andµ′′(l)Pkν(k)Rkµ
′′(k),

contradicting to the stability of µ′′. In sum, ν is stable. As ν Pareto dominates µ′, µ′

is not constrained efficient. However, as shown in the proof of (v)⇒ (i), f DA(ς′, ·) is a

constrained efficient rule when ≽ is T-acyclic. So a contradiction is reached.

Case 2: µ′( j)Pjµ( j).

34Generally, if µ1 is a stable deterministic allocation and µ2 Pareto dominates µ1, then µ2 is individually
rational and nonwasteful. While the individual rationality part is obvious, the nonwastefulness of µ2
follows from the fact that |µ−1

1 (x)|= |µ−1
2 (x)| for all x ∈ X , which is a part of Lemma 1 in Erdil and Ergin

(2008).
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It will be shown that there exists a type-I or type-II cycle in this case. First, a finite

sequence of n + 1 ≥ 2 distinct agents (i, i1, . . . , in) is called a chain if the following

two conditions are satisfied: (1) µ′(ik+1)Pikµ
′(ik) and µ′(ik+1) = µ(ik) for each k ∈

{0, . . . , n− 1}, with i0 = i; (2) µ′(i)Pinµ
′(in) and µ′(i) = µ(in), or, µ′( j)Pinµ

′(in) and

µ′( j) = µ(in).
We show that a chain exists. Let NW (y) =

󲷮
l ∈ µ−1(y) : yPlµ

′(l)
󲷯

for each y ∈ X ,

and NW = {l ∈ N : µ(l)Plµ
′(l)}. By the individual rationality of µ′, µ(l) ∈ X for each

l ∈ NW . Hence, NW = ∪y∈X NW (y). For each y ∈ X , the nonwastefulness of µ′ implies

that |(µ′)−1(y) \µ−1(y)| ≥ |NW (y)|. So there exists a one-to-one function f : NW → N

such that µ′( f (l)) = µ(l) and µ( f (l)) ∕= µ(l) for all l ∈ NW . We know that i ∈ NW

and µ′( f (i)) = x . Since µ′ is stable for (≽ς′ , R) and x Pjµ
′( j), f (i) ≻ς′x j. As i’s priority

ranking in ≽ςx is the same as j’s priority ranking in ≽ς′x , f (i) ≻ςx i. Since µ(i) = x

and µ is stable for (≽ς, R), µ( f (i))R f (i)x . By the construction of f , µ( f (i)) ∕= x , so

µ( f (i))Pf (i)x . Hence, f (i) ∈ NW . Next, consider any l ∈ NW \ {i}. Since µ′ is stable

for (≽ς′ , R), f (l) ≻ς′
µ(l) l. We know that l ∕= j since j /∈ NW . Suppose that f (l) ∕= j

and f (l) ∕= i, then ςµ(l)(l) = ς′µ(l)(l) and ςµ(l)( f (l)) = ς′µ(l)( f (l)). Thus f (l) ≻ς
µ(l) l.

As µ is stable for (≽ς, R), µ( f (l))R f (l)µ(l). Then it follows from µ( f (l)) ∕= µ(l) that

µ( f (l))Pf (l)µ(l). That is, f (l) ∈ NW . In sum, it has been shown that f is a one-to-one

mapping from NW to NW∪{ j}. This implies that a chain (i, j1, . . . , jm) can be constructed

using f , where jk+1 = f ( jk) for all k ∈ {0, . . . , m− 1}, with j0 = i, and f ( jm) ∈ {i, j}.
Let (i, i1, . . . , in) be the shortest chain. There exists i∗ ∈ {i, j} such that µ′(i∗)Pinµ

′(in)
and µ′(i∗) = µ(in). Let { j∗} = {i, j} \ {i∗}. We will construct a type-I or type-II cycle

using the agents i = i0, j, i1, . . . , in and the objects µ′(i1) = x , . . . ,µ′(in),µ′(i∗). We first

show that these objects are distinct. Clearly µ′(i∗) ∕= x . If µ′(ik) = x for some k with

1< k ≤ n, then (i, ik, . . . , in) is a shorter chain. Let in+1 = i∗. If there exist k and k′ such

that 1 < k < k′ ≤ n+ 1 and µ′(ik) = µ′(ik′), then (i, i1, . . . , ik−1, ik′ , . . . , in) is a shorter

chain when k′ < n+ 1, and (i, i1, . . . , ik−1) is a shorter chain when k′ = n+ 1. Hence,

µ′(i1), . . . ,µ′(in),µ′(i∗) are distinct. Moreover, µ′( j∗) ∕= µ′(ik) for any k ∈ {1, . . . , n},
since µ′( j∗) ∕= x and if µ′( j∗) = µ′(ik) for some k with 2 ≤ k ≤ n, then (i, i1, . . . , ik−1) is

a shorter chain. It also follows that i1, . . . , in, i∗, j∗ are distinct. Notice that we cannot

rule out the case of µ′(i∗) = µ′( j∗).
Case 2.1: µ′(i∗) = µ′( j∗), i.e., µ′(i) = µ′( j). Since µ′ is stable for (≽, R) and

µ′(i)Pinµ
′(in), i ≽µ′(i) in and j ≽µ′(i) in. Given that µ′( j)Pjµ( j) and µ(in) = µ′(i),

the stability of µ for (≽, R) implies in ≽µ′(i) j. Hence, i ≽µ′(i) in ∼µ′(i) j. Suppose
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that i ∼µ′(i) in ∼µ′(i) j. By the stability of µ′ for (≽ς′ , R), ς′
µ′(i)(i) < ς

′
µ′(i)(in). Then

ςµ′(i)( j) = ς′µ′(i)(i)< ς
′
µ′(i)(in) = ςµ′(i)(in). So j ≻ς

µ′(i) in, contradicting to the stability of µ

for (≽ς, R). Therefore, we must have i ≻µ′(i) in ∼µ′(i) j. Let Nµ′(i) = µ−1(µ′(i)) \ {in} and

Nx = µ−1(x) \ {i}. Obviously, Nµ′(i) and Nx are disjoint. Since x Pjµ( j) and µ′(i)Pjµ( j),
we have Nµ′(i), Nx ⊆ N \{i, in, j}. Then by the stability of µ for (≽, R), Nµ′(i) ⊆ U(≽µ′(i), j),
Nx ⊆ U(≽x , j) = U(≽x , i), |Nµ′(i)| = qµ′(i) − 1 and |Nx | = qx − 1. Hence, we have found

a type-I cycle, in which i ≻µ′(i) in ∼µ′(i) j ≽x i.

Case 2.2: µ′(i∗) ∕= µ′( j∗). Given that µ′(ik+1)Pikµ
′(ik) for k = 0, . . . , n and µ′ is stable

for (≽, R), we have i1 ≽x j∗ ∼x i∗, and ik+1 ≽µ′(ik+1) ik for k = n, . . . , 1. If i1 ∼x j∗ ∼x

i∗, then ik+1 ≻µ′(ik+1) ik for some k ∈ {1, . . . , n}, since otherwise the stability of µ′ for

(≽ς′ , R) implies ς′y(i
∗) < ς′y(in) < . . . < ς′y(i1) < ς

′
y(i
∗) for any y ∈ X . So the cycle

condition of a generalized type-II cycle is satisfied. If i1 ≻x j∗ ∼x i∗, then the cycle

condition of a type-I cycle is satisfied. We finish the proof by establishing the same

scarcity condition for either type of cycle. Let Nk = {l ∈ N : µ′(l) = µ′(ik), l ∕= ik} for

k = 1, . . . , n+ 1. Obviously, N1, . . . , Nn+1 are disjoint. Given that µ′( j∗) ∕= µ′(ik) for any

k ∈ {1, . . . , n+ 1}, Nk ⊆ N \{i∗, j∗, i1, . . . , in} for all k. Finally, the stability of µ′ for (≽, R)
implies that N1 ⊆ U(≽x , i∗), |N1|= qx −1, Nk+1 ⊆ U(≽µ′(ik+1), ik) and |Nk+1|= qµ′(ik+1)−1

for k = n, . . . , 1. Therefore, there exists a type-I cycle or a generalized type-II cycle. By

Claim 1, there exists a type-I cycle or a type-II cycle.

In sum, it has been shown that in Case 2 there exists a type-I or type-II cycle, con-

tradicting to the initial assumption that ≽ is T-acyclic.

Consider any x ∈ U(Ri, x̄). To establish the strong symmetry of DA-STB, it is suffi-

cient to show that for any ς ∈ ˜󲺞 |X |, f DA
i (ς, R) = x implies f DA

j (ς
′, R) = x .35

Suppose that for some ς ∈ ˜󲺞 |X |, f DA
i (ς, R) = x . If f DA

j (ς, R) = y ∈ U(Ri, x̄), then

during the process of DA, i and j only apply to some objects in U(Ri, x̄), and they only

differ in their orderings. Thus, when their orderings are switched, their assignments

are also switched. That is, f DA
j (ς

′, R) = x and f DA
i (ς

′, R) = y .

If f DA
j (ς, R) = y /∈ U(Ri, x̄), then x Pj y . By Claim 2, f DA

j (ς
′, R)R j x . Suppose that

f DA
j (ς

′, R) ∕= x , i.e., f DA
j (ς

′, R)Pj x . Clearly f DA
j (ς

′, R) ∈ U(Ri, x̄). If f DA
i (ς

′, R) ∈ U(Ri, x̄),
then by a similar argument as before, i and j’s assignments are switched when the

35If it can be shown that f DA
i (ς, R) = x implies f DA

j (ς
′, R) = x for any ς ∈ ˜󲺞 |X |, then

󲷲󲷲󲷮ς ∈ ˜󲺞 |X | :

f DA
j (ς, R) = x
󲷯󲷲󲷲 ≥
󲷲󲷲󲷮ς ∈ ˜󲺞 |X | : f DA

i (ς, R) = x
󲷯󲷲󲷲 because the mapping g : ˜󲺞 |X | → ˜󲺞 |X |, where g(ς) = ς′

for all ς ∈ ˜󲺞 |X |, is one-to-one. By symmetric arguments,
󲷲󲷲󲷮ς ∈ ˜󲺞 |X | : f DA

i (ς, R) = x
󲷯󲷲󲷲 ≥
󲷲󲷲󲷮ς ∈ ˜󲺞 |X | :

f DA
j (ς, R) = x
󲷯󲷲󲷲. Hence f DA-STB

ix (R) = f DA-STB
jx (R).
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orderings are changed from ς′ to ς: f DA
i (ς, R) = f DA

j (ς
′, R). It follows that f DA

i (ς, R)Pi x ,

contradiction. On the other hand, if f DA
i (ς

′, R) /∈ U(Ri, x̄), then f DA
j (ς

′, R)Pi f
DA

i (ς
′, R).

Consider a change of the orderings from ς′ to ς. By an argument symmetric to Claim

2, we have f DA
i (ς, R)Ri f

DA
j (ς

′, R). It follows that f DA
i (ς, R)Pi x , contradiction.

Proof of (iii) ⇒ (v). Suppose that there exists a strategy-proof, ex-post constrained

efficient, symmetric and locally envy-free rule f , but ≽ is not T-acyclic.

Case 1: there exists a type-I cycle.

Let this cycle consist of distinct i1, . . . , in ∈ N , n ≥ 3, and distinct x1, . . . , xn−1 ∈ X

such that: (1) i1 ≻x1
i2 ∼x1

i3, and ik+1 ≽xk
ik+2 for all k with 2 ≤ k ≤ n − 1, where

in+1 = i1; (2) there exist n− 1 mutually disjoint sets N1, . . . , Nn−1 ⊆ N \ {i1, . . . , in} such

that Nk ⊆ U(≽xk
, ik+2) and |Nk| = qxk

− 1 for each k with 1 ≤ k ≤ n− 1. Consider the

following two preference profiles.36

R :

i1 : xn−1, x1,󲅭
i2 : x1,󲅭
ik : xk−2, xk−1,󲅭 for k = 3, . . . , n

i ∈ Nk : xk,󲅭 for k = 1, . . . , n− 1

R′ :

i1 : xn−1,󲅭
i2 : x1,󲅭
ik : xk−2,󲅭 for k = 3, . . . , n

i ∈ Nk : xk,󲅭 for k = 1, . . . , n− 1

Since f is ex-post constrained efficient, there exists a lottery λ that induces f (R) and

each µ ∈ 󲺢 (λ) is constrained efficient.

First, we show that fi1 x1
(R) = 0. Assume to the contrary, fi1 x1

(R) > 0. Then for

some µ ∈ 󲺢 (λ), µ(i1) = x1. If µ(i2) = x1, then there exists i ∈ N1 such that µ(i) = 󲅭.
By stability, i ∼x1

i2 ∼x1
i3. The other possible case is that µ(i2) ∕= x1. Therefore, in

sum, there must exist some j ∈ {i2}∪ N1 such that µ( j) = 󲅭 and j ∼x1
i3. Consider the

deterministic allocation ν in which ν( j) = 󲅭 and every agent except j is assigned her

top choice. ν is well defined given the construction of R. It follows from j ∼x1
i3 that

36Any unlisted agent is assumed to rank her outside option at the top. Then such an agent will be
assigned her outside option with probability one under an individually rational rule.
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j′ ≽x1
j for all j′ ∈ ν−1(x1). So ν is stable. A contradiction is reached since ν Pareto

dominates the constrained efficient deterministic allocation µ.

Second, we show that fi1 xn−1
(R) < 1. Assume to the contrary, fi1 xn−1

(R) = 1. Then

by strategy-proofness, fi1 xn−1
(R′i1 , R−i1) = 1. Consider any i ∈ Nn−1. If i ≻xn−1

i1, then by

ex-post stability, fi xn−1
(R′i1 , R−i1) = 1. If i ∼xn−1

i1, then by symmetry, fi xn−1
(R′i1 , R−i1) = 1.

It follows that fin xn−1
(R′i1 , R−i1) = 0. Since in ≽xn−1

i1, in ≻xn−1
i1 or in ∼xn−1

i1. In

the former case, by ex-post stability, fin xn−2
(R′i1 , R−i1) = 1. In the latter case, by lo-

cal envy-freeness, we also have fin xn−2
(R′i1 , R−i1) = 1. By similar arguments, it can be

shown that fin xn−2
(R′i1 , R−i1) = 1 implies fin xn−2

(R′i1 , R′in , R−{i1,in}) = 1, which further im-

plies fin−1 xn−3
(R′i1 , R′in , R−{i1,in}) = 1 (when n > 3). Continuing in this fashion, eventu-

ally we have fi3 x1
(R′) = 1. Then by symmetry and ex-post stability, fi2 x1

(R′) = 1 and

fi x1
(R′) = 1 for all i ∈ N1. A contradiction is reached since at least qx1

+ 1 agents are

assigned x1 with probability one.

Finally, given that fi1 x1
(R) = 0 and fi1 xn−1

(R)< 1, fi1󲅭(R)> 0. So for some µ′ ∈ 󲺢 (λ),
µ′(i1) = 󲅭. Since µ′ is stable and i1 ≻x1

i2 ∼x1
i3, µ′(i2) ∕= x1 and µ′(i3) ∕= x1. It follows

that (µ′)−1(x1) ⊆ N1, contradicting to the nonwastefulness of µ′.

Case 2: there exists a type-II cycle.

We first refine the notion of a type-II cycle. A type-II* cycle consists of distinct i, j, k ∈ N

and x , y ∈ X such that the following conditions are satisfied: (Cycle) i ∼x j ∼x k ≻y i

and j ≻y i; (Scarcity) there exist (possibly empty) disjoint sets Nx , Ny ⊆ N \{i, j, k} such

that Nx ⊆ U(≽x , i), Nx ⊆ SU(≽y , i), Ny ⊆ SU(≽y , i), |Nx |= qx − 1 and |Ny |= qy − 1.

Claim 3. If there is a type-II cycle but not any type-I cycle, then there is a type-II* cycle.

Proof. Suppose that there does not exist any type-I cycle, and there exists a type-II cycle

that consists of distinct i, j, k ∈ N and x , y ∈ X such that: (1) i ∼x j ∼x k ≻y i; (2)

there exist disjoint sets Nx , Ny ⊆ N \ {i, j, k} such that Nx ⊆ U(≽x , i), Ny ⊆ U(≽y , i),
|Nx | = qx − 1 and |Ny | = qy − 1. If j ∼y i, then there is a type-I cycle since k ≻y i ∼y

j ≽x k, Ny ⊆ U(≽y , i) and Nx ⊆ U(≽x , k). So we have either j ≻y i or i ≻y j. Suppose

j ≻y i. We will show that a type-II* cycle exists in this case. The other case can be

shown similarly by switching the roles of i and j.

First, Ny ⊆ SU(≽y , i). If this is not true, there exists l ∈ Ny such that l ∼y i. A

type-I cycle is found since k ≻y l ∼y i ≽x k and the scarcity condition is satisfied by

(Ny \ {l})∪ { j} and Nx .
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Second, if l ∈ Nx and l ≻x i, l ≻y i. To see this, suppose l ∈ Nx , l ≻x i and i ≽y l.

Then there is a type-I cycle: l ≻x j ∼x i ≽y l and the scarcity condition is satisfied by

(Nx \ {l})∪ {k} and Ny .

Third, if l ∈ Nx and l ∼x i, l ∕∼y i. If this is not true, there is a type-I cycle: k ≻y

l ∼y i ≽x k and the scarcity condition is satisfied by Ny and (Nx \ {l})∪ { j}.
Fourth, if l, l ′ ∈ Nx , l ∕= l ′, l ∼x l ′ ∼x i, i ≻y l and i ≻y l ′, then l ∕∼y l ′. If this is not

true, there is a type-I cycle: i ≻y l ∼y l ′ ≽x i and the scarcity condition is satisfied by

Ny and (Nx \ {l, l ′})∪ { j, k}.
Therefore, if N ∗ =

󲷮
l ∈ Nx : l ∼x i, i ≻y l

󲷯
is empty, then by the first three results

the type-II cycle that consists of i, j, k ∈ N and x , y ∈ X is also a type-II* cycle. If N ∗ is

nonempty, by the fourth result, we can find l ∈ N ∗ such that l ′ ≻y l for any l ′ ∈ N ∗ \{l}.
Then i, j, l and x , y form a type-II* cycle: l ∼x i ∼x j ≻y l, i ≻y l, and the scarcity

condition is satisfied by (Nx \ {l})∪ {k} and Ny .

In light of Claim 3, it is sufficient to consider a type-II* cycle. Let this cycle consist

of i, j, k ∈ N and x , y ∈ X such that: (1) i ∼x j ∼x k ≻y i and j ≻y i; (2) there exist

disjoint Nx , Ny ⊆ N \ {i, j, k} such that Nx ⊆ U(≽x , i), Nx ⊆ SU(≽y , i), Ny ⊆ SU(≽y , i),
|Nx |= qx − 1 and |Ny |= qy − 1. Let N ∗x = {l ∈ Nx : l ∼x i} and q = qx − |Nx \N ∗x |. Then

|N ∗x | = q − 1. In the following analysis, we will restrict attention to preference profiles

in which x is only acceptable to some agents in {i, j, k}∪Nx , and the agents in Nx \N ∗x
rank x at the top. By the ex-post stability of f , each agent in Nx \N ∗x is always assigned

x with probability one. Hence, q ≥ 1 is essentially the number of copies of x available

for {i, j, k}∪ N ∗x . Consider the following preference profiles.

R1 :

i : x ,󲅭
j : x ,󲅭
k : x ,󲅭
N ∗x : x ,󲅭
Ny : y,󲅭
Nx \ N ∗x : x ,󲅭

R2 :

i : x , y,󲅭
j : x , y,󲅭
k : x , y,󲅭
N ∗x : x , y,󲅭
Ny : y,󲅭
Nx \ N ∗x : x ,󲅭

R3 :

i : y, x ,󲅭
j : x ,󲅭
k : x , y,󲅭
N ∗x : x , y,󲅭
Ny : y,󲅭
Nx \ N ∗x : x ,󲅭

At R1, by individual rationality and ex-post nonwastefulness,
󰁓

l∈{i, j,k}∪N∗x
fl x(R1) =

q.37 Then by symmetry, fl x(R1) = q
q+2 for all l ∈ {i, j, k}∪N ∗x . We use induction to show

that the allocation of x is the same at R2. Consider the following statement: for any N ′ ⊆
37Formally, an allocation M is ex-post nonwasteful if some lottery λ induces M and each µ ∈ 󲺢 (λ)

is nonwasteful. It is worth mentioning that an ex-post nonwasteful allocation M may involve "waste"
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{i, j, k} ∪ N ∗x with |N ′| = n, fl x(R2
N ′ , R1

−N ′) =
q

q+2 for all l ∈ {i, j, k} ∪ N ∗x . It is obviously

true if n= 0. Suppose that the statement is true for n with 0≤ n≤ q+1. Consider any

N ′ ⊆ {i, j, k}∪ N ∗x with |N ′| = n+ 1 and any l ∈ N ′. Then fl x(R2
N ′\{l}, R1

−N ′\{l}) =
q

q+2 . By

strategy-proofness, fl x(R2
N ′ , R1

−N ′) =
q

q+2 . Notice that the choice of l is arbitrary within

the set N ′. So fl ′x(R2
N ′ , R1

−N ′) =
q

q+2 for all l ′ ∈ N ′. By individual rationality and ex-post

nonwastefulness,
󰁓

l ′∈({i, j,k}∪N∗x )\N ′ fl ′x(R2
N ′ , R1

−N ′) = q− q
q+2 |N ′|. Then the symmetry of f

with respect to ({i, j, k}∪ N ∗x ) \ N ′ implies fl ′x(R2
N ′ , R1

−N ′) =
q

q+2 for all l ′ ∈ {i, j, k}∪ N ∗x .

That is, the statement is true for n+1. Therefore, fl ′x(R2) = q
q+2 for all l ′ ∈ {i, j, k}∪N ∗x .

Let µ be any stable deterministic allocation for (≽, R2). Since l ≻y i for all l ∈ { j, k}∪
N ∗x ∪ Ny , if µ(i) = y , then µ(l) = y for all l ∈ Ny , and µ(l) = x for all l ∈ { j, k} ∪ N ∗x ,

which is not possible. So by ex-post stability, fi y(R2) = 0. By the same reasoning,

fi y(R3
i , R2
−i) = 0. Then the strategy-proofness of f implies fi x(R3

i , R2
−i) = fi x(R2) = q

q+2 .

It follows that for some l ∈ { j, k} ∪ N ∗x , fl x(R3
i , R2
−i) ≤

q
q+2 . Without loss of generality,

suppose that f j x(R3
i , R2
−i)≤

q
q+2 . Then by strategy-proofness,

f j x(R
3) = f j x(R

3
i , R2
−i)≤

q
q+ 2

. (1)

Consider R3. We argue that fi y(R3) + f j x(R3)≥ 1. Assume to the contrary, fi y(R3) +
f j x(R3) < 1. Let λ be a lottery that induces f (R3) such that each µ ∈ 󲺢 (λ) is con-

strained efficient. Then there exists µ ∈ 󲺢 (λ) such that µ(i) ∕= y and µ( j) ∕= x .

By individual rationality, µ( j) = 󲅭. Consider the deterministic allocation ν in which

ν( j) = 󲅭 and every other agent is assigned her top choice. It is easy to see that ν

is stable and it Pareto dominates µ, contradicting to the constrained efficiency of µ.

Therefore, fi y(R3) + f j x(R3)≥ 1. Then it follows from (1) that

fi y(R
3)≥ 2

q+ 2
. (2)

Finally, consider the following preference profiles.

ex-ante, i.e., there may exist i ∈ N and x ∈ X such that
󰁓

y∈U(Ri ,x)
Mi y < 1 and
󰁓

j∈N M j x < qx . However,
it can be easily shown that generally if an allocation M is ex-post nonwasteful and there are at least qx
agents rank some object x ∈ X at the top, then

󰁓
i∈N Mi x = qx .
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R4 :

i : y,󲅭
j : x ,󲅭
k : x ,󲅭
N ∗x : x ,󲅭
Ny : y,󲅭
Nx \ N ∗x : x ,󲅭

R5 :

i : y,󲅭
j : x ,󲅭
k : x , y,󲅭
N ∗x : x , y,󲅭
Ny : y,󲅭
Nx \ N ∗x : x ,󲅭

At R4, by individual rationality and ex-post nonwastefulness,
󰁓

l∈{ j,k}∪N∗x
fl x(R4) = q.

Then by symmetry, fl x(R4) = q
q+1 for all l ∈ { j, k}∪N ∗x . Similar to the previous discussion

about moving from R1 to R2, we can use induction to show that fl x(R5) = q
q+1 for all

l ∈ { j, k} ∪ N ∗x . Next, consider any stable deterministic allocation µ for (≽, R5) and

any l ∈ {k} ∪ N ∗x ∪ Ny . Suppose that µ(l) = 󲅭. Then by stability µ(i) = 󲅭. Since the

q copies of x and qy copies of y can only be allocated to {i, j, k} ∪ N ∗x ∪ Ny at µ and

| {i, j, k} ∪ N ∗x ∪ Ny | = q + qy + 1, there is at least one copy of x or one copy of y that

is unassigned. This implies that µ is wasteful because q+ 1 agents in {i, j, k}∪N ∗x ∪Ny

rank x at the top and qy agents in this set rank y at the top. Therefore, µ(l ′) ∕= 󲅭
for any l ′ ∈ {k} ∪ N ∗x ∪ Ny . Then by ex-post stability, fl ′ y(R5) = 1 for all l ′ ∈ Ny , and

fl ′ y(R5) = 1 − q
q+1 =

1
q+1 for all l ′ ∈ {k} ∪ N ∗x . Moreover,

󰁓
l ′∈{i,k}∪N∗x∪Ny

fl ′ y(R5) = qy .

Hence,

fi y(R
5) = qy −
󰁛

l ′∈{k}∪N∗x

fl ′ y(R
5)−
󰁛

l ′∈Ny

fl ′ y(R
5)

= qy −
q

q+ 1
− (qy − 1)

=
1

q+ 1

<
2

q+ 2

(3)

Comparing (2) and (3), f is not strategy-proof, contradiction.

Proof of (iv)⇒ (v). Suppose that there exists a strategy-proof, ex-post stable, symmet-

ric at the top and locally envy-free rule f , but ≽ is not T-acyclic. In light of Claim 3, we

consider the following two cases.

Case 1: There is a type-I cycle.

Let this cycle consist of distinct i1, . . . , in ∈ N , n ≥ 3, and distinct x1, . . . , xn−1 ∈ X
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such that: (1) i1 ≻x1
i2 ∼x1

i3, and ik+1 ≽xk
ik+2 for all k with 2 ≤ k ≤ n − 1, where

in+1 = i1; (2) there exist n− 1 mutually disjoint sets N1, . . . , Nn−1 ⊆ N \ {i1, . . . , in} such

that Nk ⊆ U(≽xk
, ik+2) and |Nk| = qxk

− 1 for each k with 1 ≤ k ≤ n− 1. Consider the

following preference profile.

R :

i1 : xn−1, x1,󲅭
i2 : x1,󲅭
i3 : x1,󲅭
ik : xk−2, xk−1,󲅭 for k = 4, . . . , n (if n≥ 4)
Nk : xk,󲅭 for k = 1, . . . , n− 1

Denote N ∗1 =
󲷮

i ∈ N1 : i ∼x1
i2
󲷯
. Let µ be any stable deterministic allocation for (≽, R).

Then µ(i) = x1 for all i ∈ N1 \ N ∗1 . If n = 3, clearly µ(i1) = x2. Suppose n ≥ 4. By

nonwastefulness and individual rationality, µ(i4) = x2, then µ(i5) = x3, . . . ,µ(in+1) =
xn−1. Therefore, by ex-post stability, fi1 xn−1

(R) = 1 and fi1 x1
(R) = 0. Moreover, fi x1

(R) =
1 for all i ∈ N1 \ N ∗1 , and

󰁓
i∈{i2,i3}∪N∗1

fi x1
(R) = qx1

− |N1 \ N ∗1 | ≥ 1. It follows from

symmetry at the top that fi x1
(R) = fi3 x1

(R) for all i ∈ {i2, i3}∪ N ∗1 .

Next, define R′i3 : x1, x2,󲅭. Let R′ = (R′i3 , R−i3). By strategy-proofness, fi3 x1
(R′) =

fi3 x1
(R). By symmetry at the top, fi x1

(R′) = fi3 x1
(R) for all i ∈ {i2, i3} ∪ N ∗1 . The ex-

post stability of f implies fi x1
(R′) = 1 for all i ∈ N1 \ N ∗1 . Hence, the allocation of x1

remains the same at R′ and fi1 x1
(R′) = 0. Let µ be any stable deterministic allocation

for (≽, R′). If µ(i1) = 󲅭, then µ(i2) ∕= x1 and µ(i3) ∕= x1. This implies that x1 is wasted.

So by ex-post stability, fi1󲅭(R
′) = 0. Therefore, fi1 xn−1

(R′) = 1. Consider any i ∈ Nn−1. If

i ≻xn−1
i1, then by ex-post stability fi xn−1

(R′) = 1. If i ∼xn−1
i1, then by symmetry at the

top fi xn−1
(R′) = 1. It follows that fin xn−1

(R′) = 0. Since in ≽xn−1
i1, by ex-post stability

(when in ≻xn−1
i1) or local envy-freeness (when in ∼xn−1

i1), we have fin xn−2
(R′) = 1. By

similar arguments, it can be shown that fin−1 xn−3
(R′) = 1 (if n≥ 4) and so on. Eventually

this leads to fi3 x1
(R′) = 1. Then it follows from previous discussion that fi x1

(R′) = 1 for

all i ∈ {i2, i3}∪ N1, which is impossible.

Case 2: There is a type-II* cycle.

Let this cycle consist of i, j, k ∈ N and x , y ∈ X such that: (1) i ∼x j ∼x k ≻y i and

j ≻y i; (2) there exist disjoint Nx , Ny ⊆ N \ {i, j, k} such that Nx ⊆ U(≽x , i), Nx ⊆
SU(≽y , i), Ny ⊆ SU(≽y , i), |Nx | = qx − 1 and |Ny | = qy − 1. Similar to Case 2 in the

proof of (iii) ⇒ (v), let N ∗x = {l ∈ Nx : l ∼x i}. Then in the following analysis, each
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l ∈ Nx \ N ∗x will always be assigned x with probability one. Let q = qx − |Nx \ N ∗x |, then

|N ∗x |= q− 1≥ 0. Consider the following preference profiles.

R :

i : y, x ,󲅭
j : x ,󲅭
k : x ,󲅭
N ∗x : x ,󲅭
Ny : y,󲅭
Nx \ N ∗x : x ,󲅭

R′ :

i : y, x ,󲅭
j : x , y,󲅭
k : x , y,󲅭
N ∗x : x , y,󲅭
Ny : y,󲅭
Nx \ N ∗x : x ,󲅭

By individual rationality and ex-post nonwastefulness, we have fi y(R) = 1, fi x(R) = 0

and
󰁓

l∈{ j,k}∪N∗x
fl x(R) = q. By symmetry at the top, fl x(R) =

q
q+1 for all l ∈ { j, k} ∪ N ∗x .

By strategy-proofness, f j x(R′j, R− j) =
q

q+1 . By symmetry at the top, fl x(R′j, R− j) =
q

q+1 for

all l ∈ { j, k} ∪ N ∗x . We can use the same reasoning to show fl x(R′{ j,k}, R−{ j,k}) =
q

q+1 for

all l ∈ { j, k}∪N ∗x , and so on. In the end, we have fl x(R′) =
q

q+1 for all l ∈ { j, k}∪N ∗x . It

follows that fi x(R′) = 0. Next, let µ be any stable deterministic allocation for (≽, R′). If

µ(i) = y , µ(l) = y for all l ∈ Ny . Then respecting priorities further requires µ(l) = x

for all l ∈ { j, k} ∪ N ∗x , which is not possible. So by ex-post stability, fi y(R′) = 0. Given

that fi x(R′) = fi y(R′) = 0, i can manipulate by reporting R′′i : x ,󲅭, since by symmetry at

the top fi x(R′′i , R′−i)> 0. This contradicts to the strategy-proofness of f .

Proof of Theorem 2

It is already known that (iii) ⇒ (i) and (i) ⇒ (ii), we show (ii) ⇒ (iii). Assume to

the contrary, there exists a strategy-proof, ex-post stable-and-efficient, symmetric and

locally envy-free rule f , but ≽ is not strongly T-acyclic. Then by Theorem 1, ≽ is not

strongly acyclic. That is, there exists a weak cycle that consists of distinct i, j, k ∈ N and

x , y ∈ X such that: (1) i ≽x j ≻x k ≽y i; (2) there exist disjoint Nx , Ny ⊆ N \ {i, j, k}
such that Nx ⊆ U(≽x , j), Ny ⊆ U(≽y , i), |Nx | = qx − 1 and |Ny | = qy − 1. Consider the

following preference profiles.

R :

i : y, x ,󲅭
j : x ,󲅭
k : x , y,󲅭
Nx : x ,󲅭
Ny : y,󲅭

R′ :

i : y,󲅭
j : x ,󲅭
k : x , y,󲅭
Nx : x ,󲅭
Ny : y,󲅭
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Let µ be stable and efficient for (≽, R). Suppose µ(i) = x . Then by individual rationality

and nonwastefulnessµ(k) = y , which contradicts efficiency. So by ex-post stability-and-

efficiency, fi x(R) = 0.

Next, we show fi y(R) < 1. Suppose that fi y(R) = 1. Then by strategy-proofness

fi y(R′) = 1. Consider any l ∈ Ny . If l ≻y i, then by ex-post stability fl y(R′) = 1.

If l ∼y i, then by symmetry fl y(R′) = 1. Therefore, fk y(R′) = 0. As k ≽y i, by ex-

post stability (when k ≻y i) or local envy-freeness (when k ∼y i), fkx(R′) = 1. Since

(Nx ∪ { j}) ⊆ SU(≽x , k), the ex-post stability of f implies fl x(R′) = 1 for all l ∈ Nx ∪ { j},
which is clearly impossible.

Given that fi x(R) = 0 and fi y(R) < 1, we have fi󲅭(R) > 0. Then by ex-post stability

(when i ≻x j) or local envy-freeness (when i ∼x j), f j x(R) < 1. Let λ be a lottery

that induces f (R) such that each µ ∈ 󲺢 (λ) is stable and efficient. Then there exists

µ ∈ 󲺢 (λ) with µ( j) = 󲅭 and µ(i) ∕= x . By stability, µ(k) ∕= x . Therefore, by individual

rationality x is assigned to at most |Nx | agents atµ, contradicting to the nonwastefulness

of µ.

Appendix B: Independence of Axioms

Theorem 1 and Theorem 2 include the following three impossibility results:

I.1. If ≽ is not T-acyclic, there does not exist a strategy-proof, ex-post constrained efficient,

symmetric and locally envy-free rule.

I.2. If ≽ is not T-acyclic, there does not exist a strategy-proof, ex-post stable, symmetric at

the top and locally envy-free rule.

I.3. If ≽ is not strongly T-acyclic, there does not exist a strategy-proof, ex-post stable-and-

efficient, symmetric and locally envy-free rule.

In this section we briefly discuss the independence of axioms in these results. We keep

the following assumption, A.1, throughout this section. If A.1 is not satisfied, ≽ is

guaranteed to be strongly T-acyclic.

A.1. There exist distinct x , y ∈ X such that |N |≥ qx + qy + 1.

Stronger impossibility results can be obtained in the special case of one-to-one allo-

cation problems. In fact, those stronger results can be established as long as the objects

in a cycle have unit capacities.
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A.2. There exist distinct x , y ∈ X such that |N |≥ qx + qy + 1 and qx ≥ 2.

It can be easily seen that, when A.2 is not satisfied, a type-I, type-II or weak cycle

can only involve objects with unit capacities. In this case, symmetry can be dropped

from I .1, and both symmetry and strategy-proofness can be dropped from I .3.

I.1*. Suppose that A.2 is not satisfied. If ≽ is not T-acyclic, there does not exist a strategy-

proof, ex-post constrained efficient and locally envy-free rule.

Proof. Suppose that A.2 is not satisfied and ≽ is not T-acyclic.

First, consider the case in which there exists a type-I cycle. We use arguments similar

to those in Case 1, proof of (iii)⇒ (v), Theorem 1, to show that there does not exist an

ex-post constrained efficient and locally envy-free rule. Assume to the contrary, there

exists such a rule f . Let the type-I cycle consist of distinct i1, . . . , in ∈ N , n ≥ 3, and

distinct x1, . . . , xn−1 ∈ X such that qxk
= 1 for all k with 1 ≤ k ≤ n− 1, i1 ≻x1

i2 ∼x1
i3,

and ik+1 ≽xk
ik+2 for all k with 2 ≤ k ≤ n− 1, where in+1 = i1. Consider the following

preference profile.

R :

i1 : xn−1, x1,󲅭
i2 : x1,󲅭
ik : xk−2, xk−1,󲅭 for k = 3, . . . , n

Let µ be a deterministic allocation for (≽, R). If µ(i1) = x1, then µ is Pareto dominated

by the stable allocation ν in which ν(i2) = 󲅭 and every other agent is assigned her top

choice. So by ex-post constrained efficiency, fi1 x1
(R) = 0. Next, suppose fi1 xn−1

(R) = 1.

Then fin xn−1
(R) = 0. By ex-post stability (when in ≻xn−1

i1) or local envy-freeness (when

in ∼xn−1
i1), fin xn−2

(R) = 1. Continuing in this fashion, in the end we have fi3 x1
(R) = 1.

Then fi2󲅭(R) = 1, contradicting to local envy-freeness. Finally, given that fi1 x1
(R) = 0

and fi1 xn−1
(R) < 1, fi1󲅭(R) > 0. Let λ be a lottery that induces f (R) such that each

µ′ ∈ 󲺢 (λ) is constrained efficient. There exists µ′ ∈ 󲺢 (λ) such that µ′(i1) = 󲅭. Then

by stability, µ′(i2) ∕= x1 and µ′(i3) ∕= x1. Therefore, a contradiction is reached since x1

is wasted.

Second, consider the case in which there exists a type-II* cycle. So there exist dis-

tinct i, j, k ∈ N and x , y ∈ X such that qx = qy = 1, i ∼x j ∼x k ≻y i and j ≻y i.

Without loss of generality, let k ≽y j. To obtain a contradiction, assume that there ex-

ists a strategy-proof, ex-post constrained efficient and locally envy-free rule f . Consider

the following preference profiles.
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R1 :

i : y, x ,󲅭
j : y, x ,󲅭
k : x , y,󲅭

R2 :

i : y, x ,󲅭
j : x , y,󲅭
k : x , y,󲅭

R3 :

i : y, x ,󲅭
j : x ,󲅭
k : x ,󲅭

Consider any constrained efficient allocation µ for (≽, R1). Suppose that µ( j) = x . Then

by stability µ(k) = y . But µ is Pareto dominated by the stable allocation ν in which

ν( j) = y and ν(k) = x , contradiction. So by ex-post constrained efficiency, f j x(R1) = 0.

Next, suppose that f j y(R1) = 1. Then fk y(R1) = 0. By ex-post stability (when k ≻y j)

or local envy-freeness (when k ∼y j), fkx(R1) = 1. Then fi󲅭(R1) = 1, contradicting to

local envy-freeness. Therefore, f j y(R1) + f j x(R1)< 1.

By strategy-proofness, f j y(R2) + f j x(R2) < 1. Then by ex-post nonwastefulness,

fi y(R2)+ fi x(R2)> 0. It can be easily seen that for any stable deterministic allocation µ

for (≽, R2), µ(i) ∕= y . So by ex-post stability fi y(R2) = 0. Therefore, fi x(R2)> 0.

Let µ be any constrained efficient allocation for (≽, (R3
j , R2
− j)). Suppose that µ(i) =

x . Then by stability µ(k) = y . But µ is Pareto dominated by the stable allocation ν

in which ν(i) = y and ν(k) = x , contradiction. So by ex-post constrained efficiency,

fi x(R3
j , R2
− j) = 0. Similarly, it can be shown that fi x(R3

k, R2
−k) = 0.

By strategy-proofness, f j x(R3
j , R2
− j) = f j x(R2). Then fi x(R2) > 0 and fi x(R3

j , R2
− j) = 0,

together with the ex-post nonwastefulness of f , imply fkx(R3
j , R2
− j) = fkx(R2) + fi x(R2).

Similarly, it can be shown that f j x(R3
k, R2
−k) = f j x(R2) + fi x(R2).

Finally, by strategy-proofness, f j x(R3) = f j x(R3
k, R2
−k) = f j x(R2)+ fi x(R2), and fkx(R3) =

fkx(R3
j , R2
− j) = fkx(R2) + fi x(R2). A contradiction is reached since f j x(R3) + fkx(R3) =

2 fi x(R2) + f j x(R2) + fkx(R2)> 1.

I.3*. Suppose that A.2 is not satisfied. If ≽ is not strongly T-acyclic, there does not exist

an ex-post stable-and-efficient, and locally envy-free rule.

Proof. Suppose that A.2 is not satisfied and≽ is not strongly T-acyclic, but there exists an

ex-post stable-and-efficient, and locally envy-free rule f . Recall that in the proof of I .1*,

it is shown that an ex-post constrained efficient and locally envy-free rule does not exist

if there is a type-I cycle. So there exists a type-II* cycle or a weak cycle. It can be easily

seen that a type-II* cycle also involves a weak cycle. Hence, it is sufficient to consider

the case in which there are distinct i, j, k ∈ N and x , y ∈ X such that qx = qy = 1 and

i ≽x j ≻x k ≽y i. Consider the following preference profile.
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R :

i : y, x ,󲅭
j : x ,󲅭
k : x , y,󲅭

Similar to the proof of Theorem 2, it is easy to show the following. First, by ex-post

stability-and-efficiency, fi x(R) = 0. Second, by ex-post stability or local envy-freeness, if

fi y(R) = 1, then fkx(R) = 1. But this implies f j x(R) = 0 and contradicts ex-post stability.

Hence, fi y(R)< 1.

Since fi󲅭(R) > 0, by ex-post stability (when i ≻x j) or local envy-freeness (when

i ∼x j), f j x(R) ∕= 1. Let λ be a lottery that induces f (R) such that each µ ∈ 󲺢 (λ) is

stable and efficient. Then there exists µ ∈ 󲺢 (λ) with µ( j) = 󲅭 and µ(i) ∕= x . As µ

respects priorities, µ(k) ∕= x . So x is wasted and a contradiction is reached.

In the rest of this section, we give examples to show that the impossibility results

can not be further strengthened.

Independence of the axioms in I.1. First, the following example shows that local

envy-freeness is crucial (for all the impossibility results).

Example B.1 (≽ is not T-acyclic, and there exists a strategy-proof, ex-post stable-and-

efficient, and strongly symmetric rule). By A.1, there exist distinct 1, 2, 3 ∈ N and x , y ∈ X

such that |N |≥ qx+qy+1. Let σ ∈ 󲺞 . The priority structure is as follows: 1∼x 3≻x 2,

1 ≻z 2 ∼z 3 for all z ∈ X \ {x}, N \ {1, 2, 3} ⊆ SU(≽z, 1) for all z ∈ X , and for all z ∈ X

and i, j ∈ N \ {1, 2, 3}, i ≻z j whenever σ(i) < σ( j). ≽ is not T-acyclic since there is a

type-I cycle in which 1 ≻y 2 ∼y 3 and 3 ≽x 1. Construct a rule f as follows. First, the

agents in N \ {1, 2, 3} choose their best available choices sequentially according to the

ordering σ, and leave the problem with their assignments. Then, consider the reduced

problem.

(1) x is exhausted or there are at least two copies of x available. Then the priority

structure in the reduced problem is strongly T-acyclic. So apply DA-STB to it.

(2) There is exactly one copy of x available.

(a) Agent 1’s first choice is z ∈ X̄ \ {x}. 1 is assigned z and leaves the problem

with her assignment. Apply DA-STB to the further reduced problem.

(b) Agent 1’s first choice is x .

(i) Agent 3’s first choice is x . Each of 1 and 3 is assigned 0.5 of x . After

x is exhausted, the three agents consume the probability shares of their
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best available choices sequentially in the order of 1, 2, 3.38

(ii) Agent 3’s first choice is not x . 1 is assigned x and leaves the problem

with x . Apply DA-STB to the further reduced problem.

It is not difficult to verify that f is strategy-proof, ex-post stable-and-efficient, and

strongly symmetric. The key in this construction is that (i) and (ii) guarantee that

agent 3 cannot manipulate. Notice that in case (b) agent 3 can only get a share of x by

reporting it as her first choice, but then she has to consume another object after agent

2.

Second, strategy-proofness cannot be dropped.

Example B.2 (≽ is not T-acyclic, and there exists an ex-post constrained efficient, symmet-

ric and locally envy-free rule). The setup is the same as Example B.1 except the relative

priority rankings among 1,2 and 3: let 1 ∼x 2 ∼x 3 and 1 ≻z 2 ≻z 3 for all z ∈ X \ {x}.
Then ≽ is not T-acyclic. Construct a rule f as follows. First, as in the previous example,

let the agents in N\{1, 2, 3} choose their best available choices sequentially according to

σ, and leave the problem with their assignments. Then, consider the reduced problem.

• x is exhausted or there are at least two copies of x available. Then the priority

structure in the reduced problem is T-acyclic. So apply DA-STB to it.

• There is exactly one copy of x available.

(1) Agent 1’s first choice is z ∈ X̄ \ {x}. 1 is assigned z and leaves the problem

with her assignment. Apply DA-STB to the further reduced problem.

(2) Agent 1’s first choice is x , and there are in total n > 1 agents whose first

choices are x . Then each of these n agents is assigned 1
n of x . After x

is exhausted, the three agents consume the probability shares of their best

available choices sequentially in the order of 1, 2, 3.

(3) Agent 1 is the only agent whose first choice is x .

(a) Agent 2 and agent 3 do not have the same first choice, or their common

first choice has more than one copies available. Then each agent is

38For example, their preferences are as follows. R1 : x , y; R2 : x , z; R3 : x , z, y . Each object has unit
capacity. Then agent 1 consumes 0.5 of y , agent 2 consumes 1 of z and agent 3 consumes 0.5 of y .
This is essentially an eating algorithm from Bogomolnaia and Moulin (2001). Hence in this case the
resulting allocation M is sd-efficient, i.e., there does not exist a different allocation M ′ such that M ′i first-
order stochastically dominates Mi for all i ∈ N . It can also be verified that M is ex-ante stable (Roth
et al., 1993), which implies that there do not exist i, j ∈ N and z ∈ X such that i ≻z j, M jz > 0 and󰁓

o∈U(Ri ,z)
Mio < 1. It follows from sd-efficiency and ex-ante stability that M must be ex-post stable-and-

efficient.
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assigned her first choice.

(b) Agent 2 and agent 3 have the same first choice with exactly one copy

available.

(i) Agent 3’s second choice is not x . Then 1 and 2 are assigned their

first choices, and 3 is assigned her second choice.

(ii) Agent 3’s second choice is x . Then each of 1 and 3 is assigned 0.5 of

x . After x is exhausted, the three agents consume their best avail-

able choices sequentially in the order of 1, 2, 3.

The symmetry and local envy-freeness of f can be easily verified. f is ex-post stable-

and-efficient except one case in (ii): if 1’s second choice coincides with 3’s first choice,

then the allocation chosen by f is only ex-post constrained efficient.

Third, under the assumption A.2, symmetry cannot be dropped. In the following

example, we additionally show that strategy-proofness cannot be dropped from I .3

when A.2 is satisfied.

Example B.3 (A.2 is satisfied and ≽ is not T-acyclic. There exists a strategy-proof, ex-

post stable-and-efficient, and locally envy-free rule, which also satisfies equal treatment

of equals, and there exists an ex-post stable-and-efficient, locally envy-free and symmetric

rule). By A.2, we can find distinct x , y ∈ X such that qx ≥ 2, qx ≤ qz for all z ∈ X with

qz ≥ 2, qy ≤ qz for all z ∈ A \ {x}, and |N | ≥ qx + qy + 1. Let 1 ∈ N and N ′ ⊆ N

such that 1 /∈ N ′ and |N ′| = qx + qy . Consider the following priority structure. For

any z ∈ X \ {x}, i, j ∈ N ′ and k ∈ N \ (N ′ ∪ {1}), we have 1 ∼x i ∼x j ≻x k and

1 ≻z i ∼z j ≻z k. Moreover, given σ̂ ∈ 󲺞 , let i ≻z j if z ∈ X , i, j ∈ N \ (N ′ ∪ {1}) and

σ̂(i)< σ̂( j). It can be easily seen that ≽ is not T-acyclic. Construct a rule f as follows.

If agent 1’s first choice is not x , let 1 be assigned her first choice and leave with her

assignment. Then apply DA-STB to the reduced problem. If agent 1’s first choice is x ,

apply a modified random serial dictatorship in which each ordering σ ∈ 󲺞 satisfying

the following conditions is picked with equal probability: σ(1) ≤ |N ′|,σ(i) ≤ |N ′|+ 1

for all i ∈ N ′, and σ(i)< σ( j) for all i, j ∈ N \ (N ′ ∪ {1}) with σ̂(i)< σ̂( j). Denote the

set of such orderings as 󲺞 ′.
First, note that any two agents with the same priority at each object are in the set N ′.

Then f satisfies equal treatment of equals by the construction. Next, let f SD(σ, ·) be the

serial dictatorship rule with respect to an ordering σ. For any R and σ ∈ 󲺞 ′, if agent 1’s

first two choices are x and z ∈ X̄ \ {x}, then f SD
1 (σ, R)R1z, since qx + qz ≥ |N ′|≥ σ(1).
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Given this, it can be easily seen that f is strategy-proof, and ex-post stable-and-efficient.

It remains to show local envy-freeness. Suppose that for some R and i ∈ N ′, f1x(R) = 1,

fi x(R) = 0 and fiz(R) > 0 for some z ∈ X̄ with x Piz. Then there exists σ ∈ 󲺞 ′ such that

f SD
1 (σ, R) = x and f SD

i (σ, R) = z. As qx ≥ 2, there is some j ∈ N ′ with f SD
j (σ, R) = x .

Clearly σ(1) < σ(i) and σ( j) < σ(i). Construct two new orderings based on σ: let

σ′ be the ordering obtained by moving 1 down such that 1 is just above i;39 let σ′′ be

the ordering obtained (from σ) by moving j down such that j is just below i. Then

σ′,σ′′ ∈ 󲺞 ′. First, we argue that f SD
k (σ, R)Rk x for all k ∈ N with σ(k)< σ(i). Assume

this is not true. Then let k ∕= i be the first agent whose assignment is worse than

x . Clearly σ(1) < σ(k) < σ(i). Consider any agent l above k with l ∕= 1. Since l

chooses an object weakly better than x under σ, l must choose the same object under

σ′. It follows that f SD
k (σ

′, R) = x and f SD
1 (σ

′, R) ∕= x , contradicting to f1x(R) = 1.

Next, consider any agent l above i with l ∕= j. Since l chooses an object weakly better

than x under σ, l chooses the same object under σ′′. This implies f SD
i (σ

′′, R) = x ,

contradicting to fi x(R) = 0. Local envy-freeness with respect to two agents in N ′ can be

shown in a similar (and easier) way.

We construct another rule f ′ as follows.

(1) Agent 1’s first choice is not x , or, her first choice is x and her second choice is not

󲅭. Let f ′ = f .

(2) Agent 1’s first choice is x and her second choice is 󲅭. Apply a modified random

serial dictatorship in which each ordering σ ∈ 󲺞 satisfying the following condi-

tions is picked with equal probability: σ(i) ≤ |N ′| + 1 for all i ∈ N ′ ∪ {1}, and

σ(i)< σ( j) for all i, j ∈ N \ (N ′ ∪ {1}) with σ̂(i)< σ̂( j).
It can be easily checked that f ′ is ex-post stable-and-efficient, locally envy-free and

symmetric. Notice that in case (1) the symmetry constraints only apply to those agents

in N ′, and in case (2) agent 1’s priority cannot be violated by any agent in N ′.

Finally, in I .1 ex-post constrained efficiency cannot be weakened to ex-post stability,

as DA-STB is always strategy-proof, ex-post stable, symmetric and locally envy-free.

Independence of the axioms in I.2. The fractional deferred acceptance mechanism

from Kesten and Ünver (2015) is ex-post stable, symmetric at the top and locally envy-

free. Random serial dictatorship is strategy-proof, symmetric at the top and locally

39Formally, σ′(1) = σ(i)−1, σ′(k) = σ(k)−1 if σ(1)< σ(k)< σ(i), and σ′(k) = σ(k) if σ(k)< σ(1)
or σ(k)≥ σ(i).
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envy-free. DA-STB is strategy-proof, ex-post stable and locally envy-free. Finally, local

envy-freeness cannot be dropped, as shown in Example B.1.

Independence of the axioms in I.3. DA-STB is strategy-proof, ex-post stable, symmet-

ric and locally envy-free. Random serial dictatorship is strategy-proof, ex-post efficient,

symmetric and locally envy-free. Local envy-freeness cannot be dropped as shown in

Example B.1. Finally, when A.2 is satisfied, strategy-proofness or symmetry cannot be

dropped as shown in Example B.3.

Appendix C

The following example from Han (2015) shows that an ex-post stable and ex-post effi-

cient allocation may not be ex-post stable-and-efficient.

Example C.1 (Han, 2015). Suppose that N = {1, 2, 3, 4, 5}, X =
󲷮

x1, x2, x3, x4, x5

󲷯

and all the objects have unit-capacities. The priority structure is as follows: i ∼x j

for all i, j ∈ N \ {5} and x ∈ X ; i ≻x 5 for all i ∈ N \ {5} and x ∈ X . Consider the

following preference profile and allocation M , where an underlined object is assigned

to the corresponding agent with probability 0.5.

1 : x1, x2,󲅭
2 : x1, x5, x2,󲅭
3 : x4, x3,󲅭
4 : x2, x4, x5,󲅭
5 : x5, x3,󲅭

For simplicity, we use µ1 = (x1, x2, x3, x4, x5) to denote the deterministic allocation

µ1 in which µ1(1) = x1,µ1(2) = x2,µ1(3) = x3,µ1(4) = x4 and µ1(5) = x5. Let µ2 =
(x2, x1, x4, x5, x3), µ3 = (x1, x2, x4, x5, x3) and µ4 = (x2, x1, x3, x4, x5). Then both the

lottery λ, in which λ(µ1) = λ(µ2) = 1
2 , and the lottery λ′, in which λ′(µ3) = λ′(µ4) = 1

2 ,

induce M . It can be easily verified that µ1 and µ2 are efficient, and µ3 and µ4 are

stable. Therefore, M is ex-post stable and ex-post efficient. However, it is not ex-post

stable-and-efficient. To see this, let λ′′ be any lottery that induces M . There exists

µ ∈ 󲺢 (λ′′) such that µ(2) = x2. Suppose that µ is efficient. Then µ(4) = x4. Since

M3x4
= M3x3

= M5x3
= M5x5

= 1
2 , we have µ(3) = x3 and µ(5) = x5. But x5P2 x2 and
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2 ≻x5
5, so µ is not stable. Therefore, some deterministic allocation in the support of

λ′′ cannot be both stable and efficient.
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