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Abstract

In a model of priority-based allocation of indivisible objects where there may not

be outside options, we characterize the priority structures under which the deferred

acceptance algorithm (DA) satisfies various desiderata. We first identify an acyclic-

ity condition that is necessary and sufficient for DA to be group strategy-proof, ro-

bustly stable, weakly group robustly stable, or to implement the stable allocation

correspondence in Nash equilibria. When there is no outside option and there are

more agents than total resources, the condition becomes considerably weaker, and

no longer requires the priorities between any pair of objects to be similar. We fur-

ther find a condition on priorities that is necessary and sufficient for the efficiency or

consistency of DA, which is in general stronger than the above incentive properties

for this mechanism.

Keywords: priority-based allocation; outside option; deferred acceptance algorithm;

group strategy-proofness; efficiency; acyclicity
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1 Introduction

Many indivisible object allocation problems, such as school choice (Abdulkadiroğlu and

Sönmez, 2003), do not involve monetary transfers and are priority-based, where each
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1



object has a strict priority ordering over agents, and each agent has a strict preference

relation over the objects as well as her outside option. The deferred acceptance algorithm

(DA) from Gale and Shapley (1962) is the most prominent mechanism for such problems.

While it is strategy-proof (Dubins and Freedman, 1981, Roth, 1982) and agent-optimal

stable, DA fails to satisfy several other desirable properties including Pareto efficiency. It

is well-known that this is attributed to rejection cycles in its apply-and-reject procedure,

where an agent’s application to an object induces a sequence of rejections that makes

herself rejected by the object in the end. Ergin (2002) introduces a condition on the

priority structure, which we refer to as E-acyclicity, that rules out such rejection cycles,

and turns out to be necessary and sufficient for DA to be efficient, group strategy-proof,

or consistent. Following studies provide further evidence on the key role of this condition

in ensuring other properties of DA, as we detail later.

In this paper, we restrict preferences in the above classical model by assuming all

objects to be acceptable for each agent. A simple and direct interpretation is that there

is no outside option and receiving any object is better than receiving nothing, which

naturally models some real-life scenarios. However, outside options are also permitted

and the classical model is included as a special case: in our many-to-one setting we can

simply let an object with a sufficiently large capacity assume the role of outside option

for each agent.1

In this context, a key first observation is that E-acyclicity is generally not necessary

for the group strategy-proofness of DA, due to the fact that some "persistent" rejection

cycles, which are ruled out by E-acyclicity, do not create chances for joint manipulations.

For instance, when an agent’s application to some object induces a rejection cycle and

the agent eventually receives nothing, she may not be able to misreport her preferences

to prevent the rejection cycle and help improve the assignments of others. This is in

contrast to the classical model, where the agent can always opt out by reporting her

outside option as the top choice.

We then identify a weaker condition that is necessary and sufficient for DA to be

group strategy-proof. E-acyclicity is defined as the absence of E-cycles in priority rela-

tions, and our condition of acyclicity is defined by ruling out some particular E-cycles

that are embedded in stable allotments. A stable allotment consists of a group of agents

and their allotted objects so that such allotments do not violate other agents’ priorities

1Recently Kesten and Kurino (2019) take a similar approach and study strategy-proof improvements
over DA in a model where there may or may not be outside options. Their setup is even more general as
agent-specific outside options are allowed.
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for all possible preferences. In the first theorem, we show that acyclicity characterizes

the priority structures under which DA is group strategy-proof, as well as the ones un-

der which (1) DA is robustly stable (Kojima, 2011), i.e., the mechanism is immune to

any combined manipulation where an agent first misreports her preferences and then

blocks the allocation, (2) DA satisfies weak group robust stability (Afacan, 2012), which

strengthens robust stability by eliminating combined manipulations by coalitions, or (3)

DA implements the stable allocation correspondence in Nash equilibria.

It has been shown by Ergin (2002), Kojima (2011), Afacan (2012) and Haeringer and

Klijn (2009) respectively that in the classical model each of the above incentive properties

is satisfied by DA if and only if the priority structure is E-acyclic. Our theorem first implies

these results, since acyclicity is reduced to E-acyclicity when the number of agents is less

than or equal to the total capacities of objects, which covers the case that some object

with a large capacity plays the role of outside option in our model.

On the other hand, as long as the number of agents is greater, these two conditions

diverge and acyclicity is considerably weaker with different interpretations. It is well-

known that E-acyclicity is very restrictive, and essentially requires any two objects to

rank the agents besides a top group similarly. In contrast, when there are more agents,

we show that acyclicity is satisfied if any two objects rank the agents besides a top group

either similarly, or very differently. In face of object shortages, heterogenous priority

orderings between objects help prevent the formation of a stable allotment that includes

agents in an E-cycle and make possible rejection cycles persistent, reducing the incentives

to manipulate.

In the end, we study three additional axioms. It turns out that efficiency is in general

stronger than group strategy-proofness for DA. We thus introduce strong acyclicity, and

show that it is necessary and sufficient for DA to be efficient, or consistent. It is defined as

the absence of an E-cycle embedded into a stable allotment in a different way, and rules

out rejection cycles in the DA procedure. Furthermore, in the (extended) classical model

Kesten (2012) shows that each object has no incentive to under-report its capacity if and

only if the priority structure with respect to minimum possible capacities is E-acyclic.

This still holds in our model, due to the flexible capacities under consideration.

In the next section we present the model and some basic existing results. Section 3

gives our main results on the incentive properties for agents, while Section 4 considers

the three additional axioms. Section 5 concludes. All the proofs are in the appendix.
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2 Preliminaries

2.1 The Model

Let N be a finite set of agents, and A a finite set of objects. Assume |A| ≥ 2. For each

object a ∈ A, there are qa ≥ 1 copies, and a has a complete, transitive and antisymmetric

priority ordering ≽a on N , with ≻a denoting its asymmetric component. Given i ∈ N ,

let U(≻a, i) = { j ∈ N : j ≻a i}. A priority structure ≽= (≽a)a∈A is a profile of priority

orderings. Let  denote the null object (i.e., the outcome of being unassigned) with a

capacity of q = |N |, and Ā = A∪ {}. Each agent i ∈ N has a complete, transitive and

antisymmetric preference relation Ri on Ā, with Pi denoting its asymmetric component.

As the central assumption in this study, we assume that aPi for all a ∈ A and i ∈ N . A

preference profile R= (Ri)i∈N is a list of individual preferences. We fix N , A, (qa)a∈A and

≽. Then a priority-based allocation problem, or simply a problem, is represented by

a preference profile R.

An allocation is denoted by a function µ : N → Ā, where |µ−1(a)| ≤ qa for all a ∈ Ā.

Given R, an allocation µ Pareto dominates another allocation ν if µ(i)Riν(i) for all i ∈ N

and µ( j)Pjν( j) for some j ∈ N . An allocation is efficient if it can not be Pareto dominated

by any allocation. An allocation µ is non-wasteful if |µ−1(a)| < qa implies µ(i)Ria for

all i ∈ N and a ∈ A. It is stable if it is non-wasteful and there do not exist i, j ∈ N such

that µ( j)Piµ(i) and i ≻µ( j) j.

A mechanism is a function that assigns an allocation to each problem. A mechanism

f is said to satisfy a certain property defined above if f (R) satisfies this property for all R.

f is strategy-proof if for every R, i ∈ N and R′i, fi(R)Ri fi(R′i, R−i). It is non-bossy if for

every R, i ∈ N and R′i, fi(R) = fi(R′i, R−i) implies f (R) = f (R′i, R−i). It is group strategy-

proof if there do not exist R, I ⊆ N , and R′I such that fi(R′I , R−I)Ri fi(R) for all i ∈ I

and f j(R′I , R−I)Pj f j(R) for some j ∈ I . It is straightforward to check that the following

well-known result still holds in our model:

Lemma 1 (Pápai, 2000). f is group strategy-proof if and only if f is strategy-proof and

non-bossy.

2.2 Deferred Acceptance Algorithm

For any problem R, the deferred acceptance algorithm (DA) of Gale and Shapley (1962)

selects an allocation through the following procedure:
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Step 1. Each agent applies to her favorite object. Each object a ∈ A places

the applicants with the highest priorities up to its capacity qa on its waiting

list, and rejects the other applicants.

Step k ≥ 2. Each agent who was rejected in Step k − 1 applies to her next

best object. Each object a ∈ A chooses among the new applicants and the

agents on its waiting list, places the ones with the highest priorities up to its

capacity qa on its waiting list, and rejects the others.

The procedure terminates when there are no more rejections. Then the copies

of each object are assigned to the agents on its waiting list.

The outcome is stable, and Pareto dominates any other stable allocation. Moreover,

the DA mechanism, denoted as f DA, is strategy-proof.

In the classical model of priority-based allocation, the null object , interpreted as the

outside option, may be preferred to some objects by an agent. In this case, an acyclicity

condition from Ergin (2002) has been shown to be necessary and sufficient for many

desiderata of DA including efficiency and group strategy-proofness. For our purpose, we

present the more general form of the cycles. An E-cycle consists of n+ 1 distinct agents

i1, . . . , in, i ∈ N , where n≥ 2, and n distinct objects a1, . . . , an ∈ A such that the following

two conditions are satisfied:

• (Cycle) i1 ≻a1
i ≻a1

i2, and ik ≻ak
ik+1 for all k ∈ {2, . . . , n}, where in+1 = i1.

• (Scarcity) There are (possibly empty) mutually disjoint sets N1, . . . , Nn ⊆ N\{i1, . . . , in, i}
such that N1 ⊆ U(≻a1

, i), Nk ⊆ U(≻ak
, ik+1) for each k ≥ 2, and |Nk| = qak

− 1 for

each k ∈ {1, . . . , n}.

Then the priority structure ≽ is E-acyclic if there does not exist any E-cycle. As shown

by Ergin (2002), when there is an E-cycle, there is an E-cycle with only three agents.

3 Results on Incentive Properties

We consider several properties of DA regarding the incentives of agents. While E-acyclicity

is still sufficient for DA to be group strategy-proof, the following example illustrates that

it is not necessary.
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Example 1. Suppose that N = {i, j, k}, A = {a, b}, and qa = qb = 1. The priorities and

preferences are:

≽a ≽b

i k

j i

k j

Ri R j Rk

b a a

a b b

  

The priority structure is not E-acyclic since i ≻a j ≻a k ≻b i. This gives rises to a rejection

cycle: in Step 1 of DA, k is rejected due to j’s application to a; in Step 2, k displaces i at b; in

Step 3, i displaces j at a. Consequently the DA outcome is not efficient, where f DA
i (R) = a,

f DA
j (R) =  and f DA

k (R) = b. However, it can be checked that under such priority structure

DA is group strategy-proof.

In the classical model, given the above true preferences R, j can report  as her first choice

so that the rejection cycle disappears, i and k receive their first choices, and j still receives

. Therefore, she is bossy and DA is not group strategy-proof. In contrast, in our model j

always induces the rejection cycle regardless of her reported preferences.

For DA to be group strategy-proof, we no longer need to impose E-acyclicity and elim-

inate all possible rejection cycles. As the example shows, "persistent" rejection cycles do

not create incentives for joint manipulations. We thus introduce a weaker condition that

only eliminates the scenarios where an agent can control the appearance of a rejection

cycle without affecting her own assignment. It is defined by ruling out some E-cycles that

are embedded into the following structure.

Definition 1. Given a non-empty set of agents I ⊆ N and a function s : I → A, if for every

i ∈ I , U(≻s(i), i) \


j ∈ I : s( j) ∕= s(i)
< qs(i),

then we say (I , s) is a stable allotment.

If (I , s) is a stable allotment, then assigning s(i) to every agent i ∈ I does not violate

the priority of any agent in N \ I , regardless of the preferences of N \ I . Furthermore,

given R, if s(i) is the top choice for each i ∈ I , then f DA
i (R) = s(i) for each i ∈ I . On the

other hand, if µ is a stable allocation for some R, and I = {i ∈ N : µ(i) ∕= } is the set of

assigned agents, then (I ,µ|I) is a stable allotment.

Remark 1. The idea behind the construction of a stable allotment is essentially the same

as enforceability in Rong, Tang, and Zhang (forthcoming). For non-empty I ⊆ N and
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s : I → Ā, they say the subassignment s is enforceable by the coalition I if the inequality in

the above definition holds for every i ∈ I with s(i) ∈ A.2 Enforceability is further used to

define a core concept in priority-based allocation, and there is no logical relation between

their results and ours.

Definition 2. A cycle consists of n+ 1 distinct agents i1, . . . , in, i ∈ N, where n ≥ 2, such

that the following conditions are satisfied:

• There exists a stable allotment (I , s) with i1, . . . , in, i ∈ I , and s(i1), . . . , s(in), s(i) are

distinct.

• (Cycle condition) i1 ≻s(i2) i ≻s(i2) i2, and ik ≻s(ik+1) ik+1 for all k ∈ {2, . . . , n}, where

in+1 = i1.

• (Scarcity condition) There are (possibly empty) mutually disjoint sets N1, . . . , Nn ⊆
I \{i1, . . . , in, i} such that N2 ⊆ U(≻s(i2), i), and Nk ⊆ U(≻s(ik), ik) for k ∕= 2. Moreover,

for all k ∈ {1, . . . , n}, |Nk|= qs(ik) − 1, and s( j) = s(ik) for every j ∈ Nk.

The priority structure is acyclic if there does not exist any cycle.

By construction, a cycle is also an E-cycle. On the other hand, if |A| ≥ 3 and |N | ≤
a∈A qa, we can easily embed any E-cycle with three agents into a stable allotment (N , s)

that includes all agents to obtain a cycle, i.e., acyclicity is equivalent to E-acyclicity in

this case. They are both satisfied by any priority structure if |A| = 2 and |N | ≤


a∈A qa.

Therefore, the two notions only diverge when |N |>


a∈A qa. Below we give an example

to illustrate a cycle with its associated stable allotment. The example also shows that,

unlike the case of E-cycles, the shortest cycle may involve more than three agents.

Example 2. Suppose that N = {1, 2, 3, 4, 5}, A = {a, b, c, d}, and qx = 1 for all x ∈ A.

Consider the following priority structure.

2So the only difference from their notion is that we require s(i) ∕=  for all i ∈ I . Both notions are
defined independently of preferences. Another related concept that is in the same vein but depends on
preferences is top fair set in Rong, Tang, and Zhang (2020), where it is shown in the classical model that
DA can be decomposed as a procedure of iteratively eliminating top fair sets if and only if it is an efficient
mechanism or the priority structure is E-acyclic.
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≽a ≽b ≽c ≽d

1 3 4 2

2 4 1 5

3 5 5 1

5 1 2 3

4 2 3 4

Let I = {1, 2, 3, 4}, s(3) = a, s(4) = b, s(1) = c and s(2) = d. Then (I , s) is a stable

allotment, and within it there is a cycle 1 ≻a 2 ≻a 3 ≻b 4 ≻c 1. It can also be shown

that it is the unique cycle. There are many other E-cycles, such as 1 ≻a 2 ≻a 3 ≻b 1 and

3≻b 4≻b 1≻c 3, which cannot be embedded into stable allotments to produce cycles.

We introduce the following additional incentive properties for agents, which will be

shown to be equivalent to group strategy-proofness for DA. Example 1 can be similarly

used to see that DA may satisfy them in the presence of E-cycles.

• Haeringer and Klijn (2009) consider the preference revelation games under DA.3

Suppose that the true preferences of the agents are R. If they simultaneously report

their preferences as R̄,4 then the outcome is determined by DA as f DA(R̄). A strategy

profile R̄ is a Nash equilibrium of this game if f DA
i (R̄)Ri f

DA
i (R̄

′
i, R̄−i) for all i ∈ N and

R̄′i. Let  (R) be the set of all Nash equilibria,  (R) =


f DA(R̄) : R̄ ∈  (R)


be the

set of equilibrium outcomes, and  (R) be the set of stable allocations for R. f DA

implements the stable allocation correspondence in Nash equilibria if  (R) =  (R)
for all R.

• Kojima (2011) considers combined manipulations, where an agent misreports her

preferences and then blocks the resulting allocation. A mechanism f is robustly

stable if it is stable, strategy-proof, and there do not exist R, i ∈ N , R′i and a ∈ A

such that aPi fi(R), and (1)
 j ∈ N : f j(R′i, R−i) = a

< qa or (2) f j(R′i, R−i) = a for

some j ∈ N with i ≻a j.

• Afacan (2012) further considers combined manipulations by groups of agents. For

each a ∈ A, let ≽r
a be any complete, transitive and antisymmetric relation over 2N

that is responsive to ≽a, with ≻r
a denoting its asymmetric component.5 Then for

3Their main focus is on the case where each agent may only be able to report a constrained preference
list. Our results do not hold if an agent cannot report a full list.

4We also require  to be the last option in the reported preferences.
5That is, for any I ⊆ N and i, j ∈ N \ I , we have: (1) I ∪ {i}≻r

a I ; (2) i ≻a j implies I ∪ {i}≻r
a I ∪ { j}.
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any I ⊆ N , define a’s choice Ca(I) ⊆ I , such that |Ca(I)| ≤ qa and Ca(I) ≽r
a I ′ for

any I ′ ⊆ I with |I ′| ≤ qa. Under a mechanism f , there is a combined manipulation

by a non-empty I ⊆ N at R if there exist R′I , a partition of I as I1, . . . , In, and distinct

a1, . . . , an ∈ A such that for each k ∈ {1, . . . , n} and i ∈ Ik, we have akPi fi(R) and

Ik ⊆ Cak


j ∈ N : f j(R

′
I , R−I) = ak


∪ Ik


.

Then a mechanism f is weakly group robustly stable if it is stable, group strategy-

proof, and under f there does not exist any combined manipulation at any R. A

weakly group robustly stable mechanism is also robustly stable.

We are ready to present the main result of the paper.

Theorem 1. The following statements are equivalent:

(i) f DA is group strategy-proof.

(ii) f DA implements the stable allocation correspondence in Nash equilibria.

(iii) f DA is robustly stable.

(iv) f DA is weakly group robustly stable.

(v) The priority structure ≽ is acyclic.

In the classical model it has been shown by the above studies that DA satisfies any

of these properties if and only if ≽ is E-acyclic. Theorem 1 first extends these results.

This is because if some o ∈ A with qo = |N | assumes the role of outside option, then

|N | ≤


a∈A qa and thus acyclicity is equivalent to E-acyclicity.6 In addition, note that in

the special case of |A|= 2, DA always satisfies the incentive properties.

The main implication of the theorem is that, when |N |>


a∈A qa (and hence there is

no outside option), the necessary and sufficient condition for these equivalent properties

becomes less restrictive, which also has notably different interpretations, compared to E-

acyclicity. First, the following result of Ergin (2002) says ≽ is E-acyclic if and only if any

agent’s ranks at two objects differ by at most one when she is not ranked high enough.

Lemma 2 (Ergin, 2002). The priority structure ≽ is E-acyclic if and only if for any a, b ∈ A

and i ∈ N with |U(≻a, i)|≥ qa + qb, we have
|U(≻a, i)|− |U(≻b, i)|

≤ 1.

Based on this, in the following proposition we characterize E-acyclic priorities in a

slightly more explicit way. For brevity, we abuse the notation in this part and write I ≻a I ′

when I , I ′ ⊆ N and i ≻a j for any i ∈ I and any j ∈ I ′.
6In this case the priority ordering of o is irrelevant. Moreover, the E-acyclicity of (≽a)a∈A is equivalent

to the E-acyclicity of (≽a)a∈A\{o}, as the large capacity of o implies that it does not appear in any E-cycle.
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Proposition 1. The priority structure ≽ is E-acyclic if and only if for any a, b ∈ A there

exists (possibly empty) I ⊆ N satisfying the following conditions:

• |I |≤ qa + qb.

• I ≻a N \ I and I ≻b N \ I .

• When N \ I is non-empty, there is a partition of N \ I as I1, . . . , In such that |Ik| ≤ 2

for each k ∈ {1, . . . , n}, and I1 ≻c I2 ≻c, . . . ,≻c In for each c ∈ {a, b}.

That is, for any a, b ∈ A, while there is no restriction on the priorities within a top

group that has no more than qa + qb agents, the ranks of all remaining agents must be

sufficiently similar at these two objects. In contrast, if the total demand exceeds the total

supply, acyclicity is satisfied at least under the circumstances where the ranks of such

remaining agents are either sufficiently similar or sufficiently different.

Proposition 2. Assume |N |>


a∈A qa. The priority structure ≽ is acyclic if for any a, b ∈ A

there exists (possibly empty) I ⊆ N satisfying the following conditions:

• |I |≤ qa + qb.

• I ≻a N \ I and I ≻b N \ I .

• When N \ I is non-empty, there is a partition of N \ I as I1, . . . , In such that |Ik| ≤ 2

for each k ∈ {1, . . . , n}, I1 ≻a I2 ≻a, . . . ,≻a In, and

either I1 ≻b I2 ≻b, . . . ,≻b In or In ≻b In−1 ≻b, . . . ,≻b I1.

Intuitively, ranking the agents N \ I similarly helps rule out E-cycles, while ranking

them differently limits the formation of a stable allotment that incorporates agents in an

E-cycle.

Finally, as a simple example, suppose |N |>


a∈A qa and there is a given order of the

agents. If every object ranks agents using this order, it is clear that under such homoge-

nous priority structure DA is group strategy-proof, and satisfies all other desiderata con-

sidered in the paper. The above proposition indicates that, in addition, if some objects

rank agents using this order, while other objects rank agents using the reversed order,

then DA is still group strategy-proof, weakly group robustly stable, and implements the

stable allocation correspondence in Nash equilibria.
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4 Other Axioms

Acyclicity is not sufficient for DA to be efficient, which is illustrated by Example 1. As

shown below, it turns out that we need a stronger restriction on priorities. Hence, effi-

ciency is in general stronger than group strategy-proofness for the DA mechanism. This is

in contrast to the fact that in the classical model any non-wasteful, individually rational

and group strategy-proof mechanism (such as DA under E-acyclic priorities) is efficient.

On the other hand, for DA to be efficient, E-acyclicity is still sufficient but not neces-

sary. For instance, we can add one additional agent to the problem in Example 1 so that

she is ranked at the top by both objects. Then DA is efficient, as the E-cycle that consists

of the three original agents does not induce any rejection cycle. We introduce the fol-

lowing new condition for efficiency. It rules out rejection cycles in the DA procedure that

lead to welfare loss, and thus its role is the same as that of E-acyclicity in the classical

model.

Definition 3. A weak cycle consists of three distinct agents i, j, k ∈ N such that the following

conditions are satisfied:

• There exists a stable allotment (I , s) with i, k ∈ I , and s(i) ∕= s(k).

• (Cycle condition) i ≻s(i) j ≻s(i) k ≻s(k) i.

• (Scarcity condition) There exist (possibly empty) disjoint sets Ni, Nk ⊆ I \{i, j, k} such

that Ni ⊆ U(≻s(i), j), |Ni| = qs(i) − 1, s(ℓ) = s(i) for all ℓ ∈ Ni, Nk ⊆ U(≻s(k), i),
|Nk|= qs(k) − 1, and s(ℓ) = s(k) for all ℓ ∈ Nk.

The priority structure is strongly acyclic if there does not exist any weak cycle.

Both cycles and weak cycles are defined by embedding E-cycles into stable allotments,

but in different ways. It can be shown that there is a weak cycle when there is a cycle,

and any weak cycle is an E-cycle.7 Therefore, E-acyclicity implies strong acyclicity, and

the latter implies acyclicity. The three are all equivalent when |N |≤


a∈A qa.

We extend our baseline model to further consider the consistency in DA outcomes

or its robustness to non-simultaneous assignment. Given a problem R, an allocation µ

7In the proof of Theorem 2 in Appendix A.3 we introduce a generalized weak cycle that may involve more
than three agents. Using Lemma 4 there, after adjusting the associated stable allotment a cycle becomes a
generalized weak cycle. Then Lemma 5 shows that there is a weak cycle when there is a generalized weak
cycle.
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and a non-empty N ′ ⊆ N , if the agents N \ N ′ leave the problem with their assignments

under µ, then the reduced problem consists of N ′, A′, (q′a)a∈A′ ,

≽a |N ′


a∈A′ and

Ri|A′


i∈N ′ ,

where q′a = qa − |µ−1(a) \N ′| for each a ∈ A and A′ = {a ∈ A : q′a > 0}. We simply denote

this reduced problem as RN ′,µ. Suppose that f̄ is an extended mechanism that chooses

an allocation for every such reduced problem, then it is consistent if for any R and non-

empty N ′ ⊆ N we have f̄i(RN ′, f̄ (R)) = f̄i(R) for all i ∈ N ′. Let f̄ DA denote the extended DA

mechanism.

Theorem 2. The following statements are equivalent:

(i) f DA is efficient.

(ii) f̄ DA is consistent.8

(iii) The priority structure ≽ is strongly acyclic.

Finally, Kesten (2012) considers objects’ incentives to truthfully report their capaci-

ties. Suppose that each a ∈ A also has a preference relation Ra over subsets of agents.

The preferences of agents and objects R= (Rx)x∈N∪A as well as the capacities q = (qa)a∈A

are private information. In addition, there are exogenously given minimum capacities

q = (qa)a∈A. Then a mechanism f chooses an allocation for each R and q with q ≥
q. It is non-manipulable via capacities if for any R, q ≥ q, a ∈ A and qa ≤ q′a < qa,

fa(R, q)Ra fa(R, q′a, q−a).
In the classical setup where  is the outside option that can be preferred to some

objects by each agent, Kesten (2012) shows that DA is non-manipulable via capacities if

and only if the priority structure ≽ with respect to q is E-acyclic. It is straightforward to

show that this result holds in our case where  is the last option for all agents, due to the

flexible true capacities. In particular, when |A| ≥ 3, to see the necessity of E-acyclicity,

suppose there is an E-cycle that involves three agents and two objects. We can make a

third object’s true capacity large enough so that it serves the role of the outside option

in the proof of Kesten (2012). Then by the same arguments some object in the E-cycle

would manipulate via under-reporting its capacity.

8In the classical model, Ergin (2002) shows that for any given preference profile, if the DA outcome is
efficient, then after some agents leave with their assignments, applying DA to the reduced problem gives
each remaining agent the same assignment as before. This immediately implies "(i) =⇒ (ii)" in Theorem
2.
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5 Conclusion

In the model of priority-based allocation where there may or may not be outside op-

tions, we have identified the necessary and sufficient conditions for DA to satisfy various

properties. Both new conditions, acyclicity and strong acyclicity, are developed from

E-acyclicity using stable allotments. Previous research on priority characterization has

led to the conclusion that similar priority rankings across objects, and thus the absence

of rejection cycles, are essential for several properties of DA regarding agent incentives.

However, it is no longer the case when resources are very scarce, in the sense that agents

do not have other options than the objects to be allocated, and there are more agents

than the total capacities of the objects.

Appendix

A Proofs

A.1 Proof of Theorem 1

We show that (v)=⇒ (i), (i)=⇒ (ii), (ii)=⇒ (iii), and (iii)=⇒ (v). Given that (iv)=⇒
(iii), we finish the proof by showing that (i) and (iii) together imply (iv).

We first state the following basic property of any strategy-proof mechanism, which

will be useful in the proofs.

Lemma 3. Suppose that f is strategy-proof. For any R, i ∈ N and R′i such that


a ∈ A :

aR′i fi(R)

⊆


a ∈ A : aRi fi(R)

, we have fi(R) = fi(R′i, R−i).

A.1.1 (v)=⇒ (i)

Suppose that f DA is not group strategy-proof. Since it is strategy-proof, by Lemma 1, it is

bossy. We first show the claim below.

Claim 1. There exist R, R′, i ∈ N, and a, b ∈ A such that the following is satisfied:

• R′i ∕= Ri, and R′j = R j for all j ∈ N \ {i}.

• aPi b and there does not exist c with aPicPi b.
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• R′i is obtained from Ri by only pushing up b by one position (i.e., switching the posi-

tions of a and b in Ri), and thus bP ′i a.

• f DA
i (R) = f DA

i (R
′) = b, and f DA(R) ∕= f DA(R′).

Proof. Since f DA is bossy, there exist R, i and R′i such that f DA
i (R) = f DA

i (R
′
i, R−i) and

f DA(R) ∕= f DA(R′i, R−i). If f DA
i (R) = , then it is straightforward to see that f DA(R) is a

stable allocation for (R′i, R−i) and f DA(R′i, R−i) is a stable allocation for R, which implies

the equivalence of the two allocations by the agent-optimal stability of DA. Therefore,

let f DA
i (R) = b ∈ A. Next, consider the process of pushing up the position of b by one

position at a time in the preference list Ri, and the process of pushing up the position of

b by one position at a time in R′i. Suppose that R̄i and R̄′i are obtained after b is pushed

up to the top in these two processes, respectively. During either process, agent i is always

assigned b by Lemma 3. In particular, f DA
i (R̄i, R−i) = f DA

i (R̄
′
i, R−i) = b. The DA procedure

for (R̄i, R−i) is the same as the one for (R̄′i, R−i) and thus f DA(R̄i, R−i) = f DA(R̄′i, R−i).
Therefore, given that f DA(R) ∕= f DA(R′i, R−i), there is some other agent whose assignment

under DA changes at some point in at least one process. This finishes the proof of the

claim.

Let R, R′, i ∈ N , and a, b ∈ A be specified as in Claim 1. For simplicity, denote

f DA(R) = µ and f DA(R′) = µ′. It can be easily checked that µ is also stable for R′, and

thus µ′ Pareto dominates µ for R′. By Theorem 1 of Erdil and Ergin (2008), there exists

a stable improvement cycle for µ and R′. That is, there exists a list of n≥ 2 distinct agents

(i1, . . . , in) such that for each k ∈ {1, . . . , n}, µ(ik) ∈ A, µ(ik+1)P ′ikµ(ik), and ik ≻µ(ik+1) j for

all j ∈ N with µ(ik+1)P ′jµ( j), where in+1 = i1. As priorities are strict and the agents in the

cycle are distinct, the objects involved in the cycle, µ(i1), . . . ,µ(in), are also distinct. By

the stability of µ for R′, ik+1 ≻µ(ik+1) ik for all k. Moreover, let ν be the allocation obtained

by carrying out the exchanges in the stable improvement cycle, i.e., ν(ik) = µ(ik+1) for

all k ∈ {1, . . . , n}, and ν( j) = µ( j) for any other agent j. Then ν is stable for R′.

By the construction of R and R′, we have


j ∈ N : cP ′jµ( j)

=


j ∈ N : cPjµ( j)

, ∀c ∈ A\ {a}, (1)

and 
j ∈ N : aP ′jµ( j)

∪ {i}=


j ∈ N : aPjµ( j)

. (2)

If object a is not involved in the stable improvement cycle, then, by (1), (i1, . . . , in) is

14



also a stable improvement cycle for µ and R, and thus ν is a stable allocation for R that

Pareto dominates µ, which leads to a contradiction. Hence, without loss of generality, let

µ(i1) = a. Recall that i1 ≻a in. Since µ(i) = b and bP ′i a, in ∕= i. Moreover, aPi b indicates

i1 ≻a i by the stability of µ for R. If in ≻a i, then by (2) in is still ranked higher by a

than any other agent j who prefers a to µ( j) under R. This fact in conjunction with (1)

implies that (i1, . . . , in) is a stable improvement cycle for µ and R, and a contradiction is

reached. Therefore, we have i1 ≻a i ≻a in.

The object b is not involved in the stable improvement cycle, and hence agent i is not

in the cycle. To see this, suppose that µ(ik) = b for some k ∈ {2, . . . , n}. By (2) and the

fact that i ≻a in, i is ranked higher by a than any other agent j who prefers a to µ( j)
under R. It follows that (i1, . . . , ik−1, i) is a stable improvement cycle for µ and R, which

leads to a contradiction.

In sum, we have n+ 1 distinct agents i1, . . . , in, i such that

i1 ≻a i ≻a in ≻µ(in) in−1 . . . i2 ≻µ(i2) i1.

To show that they satisfy the definition of a cycle, consider the stable allotment (I ,ν|I),
where I =


j ∈ N : ν( j) ∕= 

, and {i1, . . . , in, i} ⊆ I . Recall that ν(ik) = µ(ik+1) for each

k ∈ {1, . . . , n}, ν(i) = b, and all these objects are distinct. Finally, it is straightforward to

see that the scarcity condition is satisfied by constructing Nk =


j ∈ N : ν( j) = ν(ik), j ∕=
ik


for each k ∈ {1, . . . , n}.

A.1.2 (i)=⇒ (ii)

Suppose that f DA is group strategy-proof. Consider any preference profile R. First, to see

that  (R) ⊆  (R), pick any µ ∈  (R). Construct a strategy R̄i for each i ∈ N , such that

µ(i) is the top choice in R̄i if µ(i) ∕= . Then, by the stability of µ for R, it is straightforward

to see that f DA(R̄) = µ and f DA
i (R̄)Ri f

DA
i (R̄

′
i, R̄−i) for any i and R̄′i. Therefore, R̄ ∈  (R)

and µ ∈  (R).
On the other hand, suppose that  (R) ⊈  (R). That is, there exists a strategy profile

R̄ ∈  (R) such that f DA(R̄) is not stable for R. Denote f DA(R̄) = µ. Then we can find i ∈ N

and a ∈ A such that aPiµ(i), and either |µ−1(a)| < qa or µ( j) = a for some j ∈ N with

i ≻a j. Since µ is stable for R̄, µ(i)P̄ia. Let µ(i) = b ∈ A, and R̄′i be any preference relation

with aP̄ ′i bP̄ ′i c for all c ∈ A\ {a, b}. Then R̄ ∈  (R) implies f DA
i (R̄

′
i, R̄−i) ∕= a. On the other

hand, the strategy-proofness of f DA implies f DA
i (R̄

′
i, R̄−i)R̄′i b. Therefore, f DA

i (R̄
′
i, R̄−i) = b.
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Then by the non-bossiness of f DA, f DA(R̄′i, R̄−i) = µ. However, as a is the top choice in R̄′i,

this shows that f DA(R̄′i, R̄−i) is not stable for (R̄′i, R̄−i), and thus a contradiction is reached.

A.1.3 (ii)=⇒ (iii)

Suppose that  (R) =  (R) for all R, but f DA is not robustly stable. Since it is strategy-

proof and stable, there exist R, i ∈ N , R′i and a ∈ A such that aPi f
DA

i (R), and
 j ∈ N :

f DA
j (R

′
i, R−i) = a
 < qa or f DA

j (R
′
i, R−i) = a for some j ∈ N with i ≻a j. Then by the

stability of f DA(R′i, R−i) for (R′i, R−i), f DA
i (R

′
i, R−i) = b for some b ∈ A. By the strategy-

proofness of f DA, b ∕= a. Construct a preference relation R′′i such that aP ′′i bP ′′i c for all

c ∈ A \ {a, b}. Given that f DA is strategy-proof, aPi f
DA

i (R) implies f DA
i (R

′′
i , R−i) ∕= a, and

f DA
i (R

′
i, R−i) = b implies f DA

i (R
′′
i , R−i)R′′i b. Therefore, f DA

i (R
′′
i , R−i) = b.

Consider the preference revelation game where the true preferences are (R′′i , R−i).
By strategy-proofness, no agent can be strictly better-off by misreporting. Therefore,

(R′′i , R−i) ∈  (R′′i , R−i). Since f DA
i (R

′
i, R−i) = f DA

i (R
′′
i , R−i), we also have (R′i, R−i) ∈  (R′′i , R−i).

However, as a is the top choice in R′′i , f DA(R′i, R−i) is not stable for (R′′i , R−i), and thus a

contradiction is reached.

A.1.4 (iii)=⇒ (v)

Suppose that there exists a cycle that consists of distinct i1, . . . , in, i ∈ N such that n ≥ 2

and the following conditions are satisfied:

• There is a stable allotment (I , s) with i1, . . . , in, i ∈ I , and s(i1), . . . , s(in), s(i) are

distinct.

• i1 ≻s(i2) i ≻s(i2) i2, and ik ≻s(ik+1) ik+1 for all k ∈ {2, . . . , n}, where in+1 = i1.

• There are mutually disjoint N1, . . . , Nn ⊆ I \ {i1, . . . , in, i} such that N2 ⊆ U(≻s(i2), i),
and Nk ⊆ U(≻s(ik), ik) for k ∕= 2. Moreover, for all k ∈ {1, . . . , n}, |Nk| = qs(ik) − 1,

and s( j) = s(ik) for every j ∈ Nk.

Consider a preference profile R such that

• Ri : s(i2), . . . ,

• Rik : s(ik), s(ik+1), . . . , ∀k ∈ {1, . . . , n},

• R j : s( j), . . . , ∀ j ∈ I \ {i1, . . . , in, i}.
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First, suppose f DA
i (R) = s(i2). Since N2 ⊆ U(≻s(i2), i), |N2| = qs(i2) − 1 and i1 ≻s(i2) i,

by stability, we have f DA
j (R) = s(i2) for all j ∈ N2 and f DA

i1
(R) = s(i1). It can be similarly

shown that stability further implies f DA
in
(R) = s(in), . . . , f DA

i2
(R) = s(i2). Then there are at

least qs(i2) + 1 agents who receive s(i2), which is impossible.

Therefore, f DA
i (R) ∕= s(i2). Let R′i be any preference relation in which s(i) is ranked at

the top. Then under the profile (R′i, R−i), s( j) is j’s first choice for every j ∈ I , and thus,

by the definition of a stable allotment, f DA
j (R

′
i, R−i) = s( j) for every j ∈ I . In particular,

f DA
i2
(R′i, R−i) = s(i2). Given that s(i2)Pi f

DA
i (R) and i ≻s(i2) i2, f DA is not robustly stable.

A.1.5 (i) and (iii)=⇒ (iv)

Suppose that f DA is group strategy-proof and robustly stable, but it is not weakly group

robustly stable. Then there exists a combined manipulation by some group of agents.

Let I ⊆ N be one of the smallest possible manipulating groups, who can do a combined

manipulation at R. That is, if there is a combined manipulation by some I ′ ⊆ N at

some preference profile, then |I | ≤ |I ′|. Moreover, there exist R′I , a partition of I as

I1, . . . , In, and distinct a1, . . . , an such that for each k and i ∈ Ik, we have akPi f
DA

i (R) and

Ik ⊆ Cak


j ∈ N : f DA

j (R
′
I , R−I) = ak


∪ Ik


. By robust stability, |I |≥ 2.

We first prove the following result.

Claim 2. There do not exist an agent i ∈ I and R′′i such that f DA
i (R

′′
i , R−i) = f DA

i (R) and

f DA
i (R

′′
i , R′I\{i}, R−I) = f DA

i (R
′
I , R−I).

Proof. Suppose that there exist such agent i ∈ I and R′′i . Since f DA is non-bossy, we have

f DA(R′′i , R−i) = f DA(R) and f DA(R′′i , R′I\{i}, R−I) = f DA(R′I , R−I). Note that for any a ∈ A and

I ′ ⊆ N , by the definition of Ca(I ′), the object a chooses I ′ if |I ′| ≤ qa, and it chooses the

highest ranked qa agents from I ′ if |I ′| > qa. The above facts then indicate that there is

a combined manipulation by I \ {i} at the preference profile (R′′i , R−i), where I \ {i} can

misreport their preferences as R′I\{i} and then jointly block the resulting allocation. This

contradicts to our initial choice of I .

If f DA
i (R) =  for some i ∈ I , then by Lemma 3, f DA

i (R
′
i, R−i) = . By setting R′′i = R′i,

we have f DA
i (R

′′
i , R−i) = f DA

i (R) and f DA
i (R

′′
i , R′I\{i}, R−I) = f DA

i (R
′
I , R−I), contradicting to

the above claim. Therefore, f DA
i (R) ∕=  for all i ∈ I . Similarly, it can be seen that

f DA
i (R

′
I , R−I) ∕=  for all i ∈ I .

Consider the deferred acceptance procedure for R. Pick i ∈ I such that i is not assigned

earlier than any other agent in I . That is, if i applies to f DA
i (R) in step ℓ of DA, then
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any j ∈ I applies to f DA
j (R) in step ℓ′ ≤ ℓ. Let i ∈ Ik, ak = a, f DA

i (R) = b ∈ A, and

f DA
i (R

′
I , R−I) = c ∈ A. Then it is already known that aPi b. Suppose that cRi b. Push the

position of c to the top in the preference relation Ri, and denote the resulting relation as

R1
i . Then by Lemma 3, f DA

i (R
1
i , R−i) = f DA

i (R) = b and f DA
i (R

1
i , R′I\{i}, R−I) = f DA

i (R
′
I , R−I) =

c, contradicting to Claim 2. Therefore, we have aPi bPic.

Given Ri, move up the position of c such that it is just above b, and denote the resulting

relation as R2
i .

9 By strategy-proofness, f DA
i (R

2
i , R−i) ∈ {b, c}. In addition, construct R3

i by

pushing the position of c to the top in R2
i .

If f DA
i (R

2
i , R−i) = b, then by Lemma 3, we have f DA

i (R
3
i , R−i) = f DA

i (R) = b, and

f DA
i (R

3
i , R′I\{i}, R−I) = f DA

i (R
′
I , R−I) = c, contradicting to Claim 2.

Finally, consider the case where f DA
i (R

2
i , R−i) = c. By our initial choice of i, every

j ∈ I \{i}will still be rejected by any object better than f DA
j (R) in the deferred acceptance

procedure for (R2
i , R−i). It follows that f DA

j (R)R j f
DA
j (R

2
i , R−i) for all j ∈ I \ {i}. Next,

consider R3
i . By Lemma 3,

f DA
i (R

3
i , R−i) = f DA

i (R
2
i , R−i) = f DA

i (R
3
i , R′I\{i}, R−I) = c.

Since f DA is non-bossy, we have f DA(R3
i , R−i) = f DA(R2

i , R−i), and f DA(R3
i , R′I\{i}, R−I) =

f DA(R′I , R−I). The former indicates f DA
j (R)R j f

DA
j (R

3
i , R−i) for all j ∈ I \ {i}, which further

implies that if j ∈ Ik′ \ {i}, then ak′Pj f
DA
j (R

3
i , R−i). Therefore, similar to the proof of

Claim 2, there is a combined manipulation by I \ {i} at (R3
i , R−i), where the agents I \ {i}

can misreport their preferences as R′I\{i} and jointly block the resulting allocation. This

contradicts to our choice of I and finishes the proof.

A.2 Proofs of Propositions 1 and 2

A.2.1 Proof of Proposition 1

The "if" part follows immediately from Lemma 2. To show the "only if" part, assume that

the priority structure ≽ is E-acyclic. We first prove the following claim.

Claim 3. Consider any a, b ∈ A and i ∈ N such that |U(≻a, i)| ≥ qa + qb and |U(≻b, i)| =
|U(≻a, i)|+ 1. If |U(≻b, j)|= |U(≻a, i)|, then |U(≻a, j)|= |U(≻b, i)|.

Proof. Suppose that |U(≻a, i)|≥ qa+qb and |U(≻b, i)|= |U(≻a, i)|+1. Then there exists

j ∈ N such that j ≻b i and i ≻a j. Since |U(≻a, j)|≥ qa + qb, Lemma 2 indicates that the

9So there is no d ∈ A such that cP2
i dP2

i b.
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ranks of j at a and b differ by at most one. This implies that j must be ranked one position

lower than i by a, and one position higher than i by b. That is, |U(≻b, j)| = |U(≻a, i)|
and |U(≻a, j)|= |U(≻b, i)|.

Consider any a, b ∈ A. When |N |≤ qa+qb, it is clear that we can choose I = N which

satisfies the three conditions in the proposition. Suppose that |N |> qa+qb. Consider the

agent i with |U(≻a, i)|= qa+qb. We will show that a set I satisfying the three conditions

can be constructed in the following three cases.

Case 1: |U(≻b, i)|= qa+qb. Then Lemma 2 implies U(≻a, i) = U(≻b, i). Let I = U(≻a, i).
Then we have |I | ≤ qa + qb, I ≻a N \ I and I ≻b N \ I . Moreover, using Claim 3, it is

straightforward to partition N \ I as I1, . . . , In such that I1 = {i}, |Ik| ≤ 2 for each k > 1,

and I1 ≻c I2 ≻c, . . . ,≻c In for each c ∈ {a, b}.

Case 2: |U(≻b, i)| = |U(≻a, i)| − 1. Consider j ∈ N with |U(≻b, j)| = |U(≻a, i)|. By

applying Claim 3 to j, we cannot have |U(≻a, j)|= |U(≻b, j)|+ 1. Therefore, by Lemma

2, |U(≻a, j)|= |U(≻b, j)|−1. It also follows from Lemma 2 that U(≻a, j) = U(≻b, i). Let

I = U(≻a, j). Then N \ I can be partitioned using Claim 3 as in the previous case.

Case 3: |U(≻b, i)|= |U(≻a, i)|+1. Consider j ∈ N with |U(≻b, j)|= |U(≻a, i)|. By Claim

3, |U(≻a, j)| = |U(≻b, i)|. We choose I = U(≻a, i) = U(≻b, j), which can be shown to

satisfy the three conditions in the proposition.

A.2.2 Proof of Proposition 2

Assume that |N |>


a∈A qa, and≽ has the structure specified in the proposition. To prove

by contradiction, suppose that≽ is not acyclic and there is a cycle that consists of distinct

i1, . . . , in, i ∈ N such that n≥ 2 and the following conditions are satisfied:

• There is a stable allotment (I , s) with i1, . . . , in, i ∈ I , and s(i1), . . . , s(in), s(i) are

distinct.

• i1 ≻s(i2) i ≻s(i2) i2, and ik ≻s(ik+1) ik+1 for all k ∈ {2, . . . , n}, where in+1 = i1.

• There are mutually disjoint N1, . . . , Nn ⊆ I \ {i1, . . . , in, i} such that N2 ⊆ U(≻s(i2), i),
and Nk ⊆ U(≻s(ik), ik) for k ∕= 2. Moreover, for all k ∈ {1, . . . , n}, |Nk| = qs(ik) − 1,

and s( j) = s(ik) for every j ∈ Nk.
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Without loss of generality, assume that it is one of the shortest cycles. If in ≻s(i2) i, then

n ≥ 3 and there is a shorter cycle in which in ≻s(i2) i ≻s(i2) i2 ≻s(i3) i3 . . . in−1 ≻s(in) in, and

the scarcity condition is satisfied by N2, . . . , Nn. Therefore, we have i ≻s(i2) in.

Denote s(i2) = a and s(i1) = b. Then there exists J ⊆ N such that:

• |J |≤ qa + qb.

• J ≻a N \ J and J ≻b N \ J .

• When N \ J ∕= , there is a partition of N \ J as I1, . . . , Im such that |Ik|≤ 2 for each

k ∈ {1, . . . , m}, I1 ≻a I2 ≻a, . . . ,≻a Im, and

either I1 ≻b I2 ≻b, . . . ,≻b Im or Im ≻b Im−1 ≻b, . . . ,≻b I1.

If i ∈ J , then {i1} ∪ N2 ≻a {i} implies {i1} ∪ N2 ⊆ J . In addition, {in} ∪ N1 ≻b {i1}
implies {in}∪N1 ⊆ J . Then |J |≥ |N1|+ |N2|+ |{i1, i, in}|= qa+qb+1 and a contradiction

is reached. Hence we have i /∈ J . Then, it follows from i ≻a in, i ≻a i2 and in ≻b i1 that

{i, in, i2, i1}∩ J = .
Since i1 ≻a i ≻a in, there is no k ∈ {1, . . . , m} such that Ik = {i1, in}. Then in ≻b i1

implies

I1 ≻a I2 ≻a, . . . ,≻a Im and Im ≻b Im−1 ≻b, . . . ,≻b I1.

Therefore, there does not exist an agent j ∈ N such that i1 ≻a i ≻a i2 ≻a j and i1 ≻b j.

We finish the proof of the proposition by showing that such agent j exists.

Consider any preference profile R where for every j ∈ I , the top choice in R j is s( j).
Then f DA

j (R) = s( j) for every j ∈ I . In particular, f DA
i2
(R) = a and f DA

i1
(R) = b. Since

|N | >


c∈A qc, there exists j ∈ N such that f DA
j (R) = . By the stability of f DA(R), we

have i2 ≻a j and i1 ≻b j.

A.3 Proof of Theorem 2

As mentioned in Section 4 (Footnote 8), it follows from Ergin (2002) that (i) =⇒ (ii).

We will show that (iii)=⇒ (i) and (ii)=⇒ (iii).

A.3.1 (iii)=⇒ (i)

We introduce a more general concept than weak cycles. A generalized weak cycle con-

sists of distinct agents i1, . . . , in, i ∈ N , where n ≥ 2, such that the following conditions
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are satisfied:

• There exists a stable allotment (I , s)with i1, . . . , in ∈ I , and the objects s(i1), . . . , s(in)
are distinct.

• (Cycle condition) i1 ≻s(i1) i ≻s(i1) i2, and ik ≻s(ik) ik+1 for all k ∈ {2, . . . , n}, where

in+1 = i1.

• (Scarcity condition) There are (possibly empty) mutually disjoint sets N1, . . . , Nn ⊆
I \ {i1, . . . , in, i} such that N1 ⊆ U(≻s(i1), i), and Nk ⊆ U(≻s(ik), ik+1) for k ∕= 1. More-

over, for all k ∈ {1, . . . , n}, |Nk|= qs(ik) − 1, and s( j) = s(ik) for every j ∈ Nk.

Suppose that there exists R such that f DA(R) is not efficient. We first extend the proof

of the main theorem in Ergin (2002) to show that there exists a generalized weak cycle.

Let f DA(R) = µ. As shown by Ergin (2002), the inefficiency of µ implies the existence

of an exchange cycle that consists of n ≥ 2 distinct agents i1, . . . , in such that the objects

µ(i1), . . . ,µ(in) are distinct and for each k ∈ {1, . . . , n}, µ(ik+1)Pikµ(ik), where in+1 = i1.

Note that by stability

i1 ≻µ(i1) in ≻µ(in) in−1 . . . i2 ≻µ(i2) i1.

For our purpose, without loss of generality, we make two assumptions on this exchange

cycle. First, it is one of the shortest exchange cycles. Second, for each k, ik cannot

be replaced by an agent with a higher priority at µ(ik+1), i.e., there does not exist i ∈
N \ {i1, . . . , in} such that µ(i) = µ(ik), µ(ik+1)Piµ(i) and i ≻µ(ik+1) ik.10

Then, given the exchange cycle, Ergin (2002) shows that there exist j ∈ N \{i1, . . . , in}
and k ∈ {1, . . . , n} such that µ(ik+1)Pjµ( j) and ik+1 ≻µ(ik+1) j ≻µ(ik+1) ik. Without loss

of generality, let k = n. As µ(i1)Pjµ( j), µ( j) ∕= µ(i1). Moreover, our first assumption

on the exchange cycle implies µ( j) ∕= µ(iℓ) for any 1 < ℓ < n, and the second one

implies µ( j) ∕= µ(in). In sum, µ( j) ∕= µ(iℓ) for any ℓ ∈ {1, . . . , n}. Therefore, after

defining I = {i ∈ N : µ(i) ∕= }, and Nℓ = {i ∈ N : µ(i) = µ(iℓ), i ∕= iℓ} for each ℓ, we

have N1, . . . , Nn ⊆ I \ {i1, . . . , in, j}. Using the stable allotment (I ,µ|I), we have found a

generalized weak cycle that consists of the agents i1, . . . , in, j, where

i1 ≻µ(i1) j ≻µ(i1) in ≻µ(in) in−1 . . . i2 ≻µ(i2) i1

and the scarcity condition is satisfied by N1, . . . , Nn.
10If there is such agent i, replacing ik with i gives a different exchange cycle. We can repeat this operation

until there is no further replacement so that the assumption is satisfied.
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The rest of the proof consists of two lemmata. The first one presents a property of a

stable allotment (Lemma 4), which can be easily shown using its definition. Based on this

result, we show that, in general, there is a weak cycle whenever there is a generalized

weak cycle (Lemma 5).

Lemma 4. Given a stable allotment (I , s), and n ≥ 2 distinct agents i1, . . . , in ∈ I , define

s′ : I → A such that s′(ik) = s(ik+1) for all k ∈ {1, . . . , n}, where in+1 = i1, and s′( j) = s( j)
for all j ∈ I \ {i1, . . . , in}. If there does not exist j ∈ N \ I such that j ≻s(ik+1) ik for any k,

then (I , s′) is a stable allotment.

That is, a different stable allotment can be constructed by letting some agents ex-

change their original allotments, as long as each of them is ranked higher by the new

allotment than any agent outside the stable allotment.

Lemma 5. If there is a generalized weak cycle, then there is a weak cycle.

Proof. We prove by contradiction. Suppose that one of the shortest generalized weak

cycles consists of n+ 1 distinct agents i1, . . . , in, i, where n ≥ 3, such that i1, . . . , in are in

a stable allotment (I , s), s(i1), . . . , s(in) are distinct, i1 ≻s(i1) i ≻s(i1) i2, ik ≻s(ik) ik+1 for all

k ∈ {2, . . . , n}, where in+1 = i1, and the scarcity condition is satisfied by N1, . . . , Nn.

Note that, for any k ∈ {1, . . . , n},
 j ∈ I : s( j) = s(ik)

 = qs(ik), which implies that

for any j ∈ Nk ∪ {ik} and ℓ ∈ N \ I , we have j ≻s(ik) ℓ.

We finish the proof in the following five steps.

Step 1: in ≻s(i1) j for all j ∈ {N \ I}∪ {i}.

To see this, suppose that j ≻s(i1) in for some j ∈ {N \ I} ∪ {i}. Then given the stable

allotment (I , s), there exists a weak cycle in which i1 ≻s(i1) j ≻s(i1) in ≻s(in) i1, and the

scarcity condition is satisfied by N1 and Nn, which leads to a contradiction.

Step 2: we can find j∗ ∈ N \ I such that j∗ ≽s(in) ℓ for all ℓ ∈ N \ I and j∗ ≻s(in) i1.

Suppose that there is no such agent j∗. Then i1 ≻s(in) j for all j ∈ N \ I . Define s′ such

that s′(i1) = s(in), s′(in) = s(i1), and s′( j) = s( j) for all j ∈ I \ {i1, in}. Then by Step 1 and

Lemma 4, (I , s′) is a stable allotment. Given (I , s′), there is a generalized weak cycle in

which in ≻s′(in) i ≻s′(in) i2 ≻s(i2) i3 . . . in−1 ≻s(in−1) in and the scarcity condition is satisfied by

N1, . . . , Nn−1. A contradiction is reached since this is a shorter generalized weak cycle.

Step 3: let ℓ∗ ∈ Nn−1∪ {in−1} such that j ≽s(in−1) ℓ
∗ for all j ∈ Nn−1∪ {in−1}. Then i1 ≻s(in−1)

ℓ∗.
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If ℓ∗ ≻s(in−1) i1, then given the stable allotment (I , s), there is a generalized weak cycle

with only n agents, in which i1 ≻s(i1) i ≻s(i1) i2 . . . in−1 ≻s(in−1) i1 and the scarcity condition

is satisfied by N1, . . . , Nn−1.

Step 4: ℓ∗ ≻s(in) j∗.

If this is not true, then given the stable allotment (I , s), there is a weak cycle in which

in ≻s(in) j∗ ≻s(in) ℓ
∗ ≻s(in−1) in (note that s(ℓ∗) = s(in−1)), and the scarcity condition is

satisfied by Nn and


Nn−1 ∪ {in−1}

\ {ℓ∗}.

Step 5: there is a weak cycle and hence a contradiction is reached.

Define s′ such that s′(i1) = s(in−1), s′(ℓ∗) = s(in), s′(in) = s(i1), and s′( j) = s( j) for all

j ∈ I \{i1,ℓ∗, in}. By Step 3, i1 ≻s(in−1) j for all j ∈ N \ I . By Step 4 as well as the choice of

j∗ in Step 2, ℓ∗ ≻s(in) j for all j ∈ N \ I . Then given Step 1, by Lemma 4, (I , s′) is a stable

allotment. Given (I , s′), we find a weak cycle in which ℓ∗ ≻s(in) j∗ ≻s(in) i1 ≻s(in−1) ℓ
∗, and

the scarcity condition is satisfied by Nn and


Nn−1 ∪ {in−1}

\ {ℓ∗}.

A.3.2 (ii)=⇒ (iii)

Suppose that there exists a weak cycle that consists of distinct i, j, k ∈ N such that the

following conditions are satisfied:

• There is a stable allotment (I , s) with i, k ∈ I , and s(i) ∕= s(k).

• i ≻s(i) j ≻s(i) k ≻s(k) i.

• There are disjoint Ni, Nk ⊆ I \ {i, j, k} such that Ni ⊆ U(≻s(i), j), |Ni| = qs(i) − 1,

s(ℓ) = s(i) for all ℓ ∈ Ni, Nk ⊆ U(≻s(k), i), |Nk| = qs(k) − 1, and s(ℓ) = s(k) for all

ℓ ∈ Nk.

Note that if j ∈ I , then s( j) /∈

s(i), s(k)

.

Consider a preference profile R such that

• Ri : s(k), s(i), . . . ,

• R j : s(i), s( j), . . . , if j ∈ I ,

• R j : s(i), . . . , if j /∈ I ,

• Rk : s(i), s(k), . . . ,
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• Rℓ : s(ℓ), . . . ,∀ℓ ∈ I \ {i, j, k}.

Since Ni ∪ { j} ⊆ U(≻s(i), k) and the first choice of every agent in Ni ∪ { j} is s(i), by

stability f DA
k (R) ∕= s(i). Similarly, given that Nk ∪ {k} ⊆ U(≻s(k), i) and s(k)Rk f DA

k (R), by

stability f DA
i (R) ∕= s(k). Therefore, neither i nor k can receive her first choice.

Let R′ be a preference profile such that:

• The first choice in R′i is s(i), and the first choice in R′k is s(k).

• The first choice in R′j is s( j) if j ∈ I , and R′j = R j otherwise.

• R′
ℓ
= Rℓ for every ℓ ∈ N \ {i, j, k}.

Under R′, the first choice of ℓ is s(ℓ) for all ℓ ∈ I . Therefore, f DA
ℓ
(R′) = s(ℓ) for all

ℓ ∈ I . Then, f DA(R′) is also a stable allocation for R. To see this, suppose that for some

ℓ ∈ N and a ∈ A we have aPℓ f
DA
ℓ
(R′), and, under f DA(R′), a is not fully assigned or

is assigned to some agent ℓ′ with ℓ ≻a ℓ
′. Then by the stability of f DA(R′) for R′, we

have f DA
ℓ
(R′)P ′

ℓ
a. By the construction of R and R′, this implies that ℓ = i and a = s(k),

ℓ = j ∈ I and a = s(i), or ℓ = k and a = s(i). However, under f DA(R′), all the copies

of s(k) are assigned to Nk ∪ {k} ⊆ U(≻s(k), i), and all the copies of s(i) are assigned to

Ni ∪ {i} ⊆ U(≻s(i), j) ⊆ U(≻s(i), k), which leads to a contradiction.

Since f DA(R) Pareto dominates f DA(R′) for R, we have f DA
i (R) = s(i) and f DA

k (R) =
s(k). Consider the extended DA, f̄ DA, and the reduced problem R{i,k}, f̄ DA(R). It is clear that

f̄ DA
i (R{i,k}, f̄ DA(R)) = s(k) ∕= f̄ DA

i (R), and thus f̄ DA is not consistent.
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