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Abstract
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which each object is endowed with a weak priority ordering over agents. It is well

known that stability is generally not compatible with efficiency in this problem.

We characterize the priority structures for which a stable and efficient assignment

always exists, as well as the priority structures that admit a stable, efficient and

(group) strategy-proof rule. While house allocation problems and housing mar-

kets are two classic families of allocation problems that admit a stable, efficient

and group strategy-proof rule, any priority-augmented allocation problem with
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1 Introduction

Many indivisible object allocation problems are "priority-augmented": while each agent has

a preference ordering over a set of heterogeneous and indivisible objects, each object also comes

with a priority ordering over the agents. Common real-world applications include assigning

students to public schools, faculty members to offices, college students to on-campus housing

and so on. An assignment respects the priorities, or is stable, if there is no situation in which

one agent envies another’s assignment for which the first agent has a strictly higher priority. A

central difficulty for a mechanism designer in this class of problems is that stability is generally

not compatible with efficiency (Roth, 1982, Abdulkadiroğlu and Sönmez, 2003). Therefore, a

natural question is that under what conditions a stable and efficient solution exists.1 When pri-

ority orderings are strict, Gale and Shapley (1962)’s deferred acceptance algorithm (DA) yields

the unique stable assignment that Pareto dominates any other stable assignment. Ergin (2002)

shows that DA is efficient (group strategy-proof) if and only if the priority structure is acyclic.

Thus acyclicity characterizes the priority structures under which a stable and efficient assign-

ment exists for any preference profile, as well as the priority structures that admit a stable,

efficient and group strategy-proof rule.

However, coarse priority rankings are common in real-world applications: in school choice,

a student’s priority at a particular school could only be determined by the district and sibling

rule; in on-campus dormitory allocation, a group of current residents or senior students might

be given equal and higher priority than others. Moreover, two extensively studied families

of allocation problems, the house allocation problems (Hylland and Zeckhauser, 1979) and

the housing market problems (Shapley and Scarf, 1974), can both be considered as allocation

problems with weak priorities: in house allocation each house ranks all the agents equally;

in a housing market each house ranks its owner higher than the other agents. They both ad-

mit a stable, efficient and group strategy-proof rule: a serial dictatorship for house allocation

problems, and Gale’s top trading cycle for housing markets. Then do there exist other (weak)

priority structures that also admit such a solution? In this study, we consider the allocation

problems with weak priorities in the one-to-one matching context and search for solvable pri-

ority structures in terms of stability, efficiency and (group) strategy-proofness.2 We define the

1We study restrictions on the priority structures. Heo (2014) considers the maximal preference domain in which
stability and efficiency are compatible.

2We maintain the usual assumption of strict preferences. For indivisible object allocation problems on the full
preference domain, see Svensson (1994) and Bogomolnaia et al. (2005) for house allocation problems, and Alcalde-
Unzu and Molis (2011), Jaramillo and Manjunath (2012) and Ehlers (2014) for housing market problems.
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non-reversal condition and show that it is both necessary and sufficient for the existence of

a stable and efficient rule, but the set of priority structures that admit a stable, efficient and

strategy-proof rule is strictly smaller. Requiring group strategy-proofness further reduces the

“maximal domain” of priority structures, which is characterized by strong non-reversal.

For the sufficiency parts of the characterizations, we introduce priority set rules, which de-

compose an allocation problem into a sequence of subproblems with simple structures. Specif-

ically, if a group of agents is ranked higher than all the other agents for every object, it is con-

sidered as a priority set and we can allocate objects to this set first without violating priorities of

the other agents. It turns out that non-reversal imposes strong structural requirements on the

subproblem induced by the smallest priority set, which can only take one of the three forms:

house allocation, housing market and indifference at the top (IT). A general queue allocation

procedure, motivated by the you request my house-I get your turn (YRMH-IGYT) algorithm (Ab-

dulkadiroğlu and Sönmez, 1999, Sönmez and Ünver, 2005), is introduced to select a stable

and efficient assignment for each type of structures, which is reduced to a serial dictatorship

for house allocation structures and is equivalent to a top trading cycle mechanism for housing

market structures. After the agents in the smallest priority set leave the problem with their

assignments, we find the smallest priority set of the reduced problem and repeat this process

iteratively.

Priority set rules can elicit true preferences for house allocation and housing market struc-

tures, but for an IT structure with more than three agents, stable and efficient assignments

cannot be selected by any strategy-proof rule. Moreover, when group strategy-proofness is im-

posed, IT structures are eliminated from any solvable problem if there are at least four objects

in the market. Therefore, the two baseline classes of allocation problems, the house alloca-

tion problems and the housing market problems, are not merely special structures that admit

a stable, efficient and group strategy-proof rule. In general, any priority-augmented allocation

problem that admits such a rule must be decomposable into a sequence of subproblems during

the iterative process of a priority set rule, each of which has a house allocation or a housing

market structure.

The main implication of our study is that generally we cannot go much beyond the two well-

known families of problems: combinations of house allocation and housing market problems

generate the whole set of problems that admit a stable, efficient and group strategy-proof rule.

Our results are essentially negative, but it is also worth noting that allowing for weak priorities

in the model yields a richer set of solvable problems. When priorities are strict, Ergin’s acyclic-

ity is equivalent to the condition that any agent’s ranks at two objects can differ at most by
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one, which implies an almost homogenous priority structure. However, under weak priorities,

various combinations of subproblems with different structures yield a larger set of admissible

problems, and even strong non-reversal does not impose any bound on how an agent’s ranks

can differ across objects.

Priority-augmented allocation has been studied extensively in the context of school choice,

starting from Abdulkadiroğlu and Sönmez (2003). The incompatibility between stability and

efficiency motivates various characterizations of the priority domain. Under strict priorities,

there is a complete set of results. In addition to Ergin (2002), the priority structures under

which the other two common school choice mechanisms, the top trading cycle mechanism and

the Boston mechanism, are stable and efficient are characterized by Kesten (2006) and Kumano

(2013), respectively.3 When agents have multi-unit demands, Kojima (2013) shows that sta-

bility is compatible with efficiency or strategy-proofness if and only if the priority structure is

essentially homogeneous. However, the literature on weak priorities has been relatively limited.

Ehlers and Erdil (2010) also generalize Ergin (2002)’s results to the case of weak priories, but

from the perspective that DA is constrained efficient under strict priorities.4 They characterize

the priority structures under which the constrained efficient correspondence is efficient, using

an acyclicity condition that is more stringent than strong non-reversal. Ehlers (2007) charac-

terizes the priority structures under which efficiency is compatible with a stronger notion of

stability. Ehlers and Westkamp (2011) consider the existence of a strategy-proof constrained

efficient rule, and they use the same method of decomposition in priority set rules.

Different from these previous studies on the priority domain (except Ehlers and Westkamp

(2011)), the questions that we are asking cannot be answered by studying the stability and

efficiency of an existing allocation rule.5 Previously studied rules for weak priorities, such as

DA with a fixed tiebreaking and a constrained efficient solution,6 are not guaranteed to be both

3Ergin’s acyclicity condition is also necessary and sufficient for DA to be immune to various types of manipulation,
see Kesten (2012) and Kojima (2011). Moreover, see Haeringer and Klijn (2009) for characterizations of the priority
domains in which Nash equilibrium outcomes are stable and efficient under various school choice mechanisms.
Hatfield et al. (2016) characterizes the priority structures under which there exists a stable or efficient rule that
respects improvements of school quality.

4An assignment is constrained efficient if it is stable and not Pareto dominated by any other stable assignment.
Under weak priorities there may exist multiple constrained efficient assignments. Erdil and Ergin (2008) introduce
a constrained efficient rule: the stable improvement cycles algorithm.

5Moreover, Ehlers and Westkamp (2011) and the current paper assume one-to-one matching, while the other
studies allow multiple copies of each object. This also suggests the difficulty in generalizing our results to the case
of many-to-one matching.

6DA with a fixed tiebreaking rule is currently used in many school choice programs in the U.S. See Abdulkadiroğlu
et al. (2005a) and Abdulkadiroğlu et al. (2005b).
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stable and efficient on the non-reversal domain. The construction of a priority rule is central

to our results, but it is not entirely new: when strong non-reversal is satisfied, each priority

set rule is equivalent to some hierarchical exchange rule (Pápai, 2000). Hierarchical exchange

rules are the only efficient, group strategy-proof and reallocation-proof rules in the standard

one-to-one assignment problem.7 Thus our results also help identify which exogenous priority

structures can be respected by some hierarchical exchange rule.

In the next section, we set up the model and define useful concepts. Section 3 considers

the existence of a stable and efficient rule, and Section 4 presents the results when strategy-

proofness or group strategy-proofness is imposed. Section 5 provides a further discussion of

the results, and then Section 6 concludes. All the proofs are contained in Appendix A.

2 Preliminaries

LetN be a finite set of agents andH a finite set of objects (houses). Each house a ∈H has

a complete and transitive priority ordering�a onN , with�a and∼a denoting its asymmetric

and symmetric components, respectively.8 A priority structure �= (�a)a∈H is a profile of

priority orderings. The problem is summarized as {N ,H ,�} and remains fixed for the rest

of the paper. Given N ⊆ N , N 6= φ, H ⊆H , H 6= φ, let �N ,H be the restriction of the priority

structure to N and H: �N ,H= (�a |N )a∈H . Then
�

N , H,�N ,H

	

is a subproblem of {N ,H ,�}.
Denote the set of all the subproblems of {N ,H ,�} asP . Notice that {N ,H ,�} ∈ P . For any
�

N , H,�N ,H

	

∈ P , each agent i ∈ N has a complete, transitive and antisymmetric preference

relation Ri on H∪{i}, with Pi denoting its asymmetric component. A house a ∈ H is acceptable

to i if aRi i. Let R{i}H denote the set of all such preference relations. Then R = (Ri)i∈N denotes

a preference profile and RN
H =

∏

i∈N R
{i}
H is the set of all the preference profiles.9

Consider any
�

N , H,�N ,H

	

∈ P and R ∈ RN
H . An assignment or matching is a one-to-one

function µ : N → H∪N such that ∀i ∈ N ,µ(i) ∈ H∪{i}. An assignment ν Pareto dominates µ

if ν(i)Riµ(i) for all i ∈ N and ν( j)Pjµ( j) for some j ∈ N . An assignment is efficient if it is not

7Reallocation-proofness rules out the possibility that two agents can gain by misrepresenting preferences and
swapping objects ex post, while one agent will obtain the same assignment if she misrepresents preferences and
the other agent reports truthfully.

8We abuse the notations slightly when there is no confusion: given N ⊆N , N ′ ⊆N , H ⊆H , denote N �H N ′ if
i �a j, ∀i ∈ N , j ∈ N ′, a ∈ H, and similarly we can define i �a N , N �H N ′, i �H N ′ and so on.

9The main focus of this paper is to study the existence of a certain rule for the problem {N ,H ,�}, and we solve
this problem by considering the existence of such a rule for various types of subproblems with special structures.
Therefore, for ease of exposition, our "problem" and "subproblems" do not include preferences, and in the following
we define all the concepts for an arbitrary subproblem.
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Pareto dominated by any other assignment. µ is stable if it satisfies the following conditions:

(i) respecting priorities, µ( j)Piµ(i) implies j �µ( j) i, ∀i, j ∈ N ; (ii) individual rationality,

µ(i)Ri i, ∀i ∈ N ; (iii) nonwastefulness, ∀a ∈ H, i ∈ N , µ−1(a) = φ implies µ(i)Ria.

Given
�

N , H,�N ,H

	

∈ P , a rule or mechanism is a function f that associates an assign-

ment f (R) with each preference profile R ∈ RN
H . A rule f is efficient (resp., stable) if for any

preference profile R ∈ RN
H , f (R) is efficient (resp., stable). f is strategy-proof if no agent

benefits from misrepresenting her preferences, i.e., given any R ∈ RN
H , i ∈ N and R′i ∈ R

{i}
H ,

fi(R)Ri fi(R′i , R−i). f is nonbossy if no agent can change others’ assignments without affect-

ing her own assignment: given any R ∈ RN
H , i ∈ N and R′i ∈ R

{i}
H , fi(R) = fi(R′i , R−i) implies

f (R) = f (R′i , R−i). f is group strategy-proof if no group of agents can jointly manipulate:

given any R ∈ RN
H , there are no N ′ ⊆ N , R′N ′ ∈ R

N ′
H such that fi(R′N ′ , R−N ′)Ri fi(R) for all i ∈ N ′,

and f j(R′N ′ , R−N ′)Pj f j(R) for some j ∈ N ′. We also have a weaker form of group strategy-

proofness: f is weakly group strategy-proof if given any R ∈ RN
H , there are no N ′ ⊆ N ,

R′N ′ ∈ R
N ′
H such that fi(R′N ′ , R−N ′)Pi fi(R) for all i ∈ N ′.

Lemma 1 (Pápai, 2000) f is group strategy-proof if and only if f is strategy-proof and nonbossy.

Consider the problem {N ,H ,�}. When �a is antisymmetric for any a ∈ H , i.e., the

priorities are strict, the following (agent-proposing) deferred acceptance algorithm (DA) of

Gale and Shapley (1962) yields the unique stable assignment that Pareto dominates any other

stable assignment. Moreover, it is strategy-proof (Dubins and Freedman, 1981, Roth, 1982).

Step 1. Each agent applies to her favorite acceptable house, then each house places the

applicant with the highest priority on its waiting list and rejects all the other applicants.

Step k. In general, at the kth step, each agent who was rejected at step k − 1 applies to

her next best acceptable house. Each house chooses among the new applicants and the agent

already on its waiting list, then places the one with the highest priority on its waiting list and

rejects all others.

The process terminates when every agent (who has at least one acceptable house) is either

rejected by all of her acceptable houses or on the waiting list of some house. Then every house

is assigned to the agent on its waiting list.

Ergin (2002) characterizes the priority structures under which DA is efficient or group

strategy-proof by an acyclicity condition.
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Definition 1 An Ergin-cycle consists of distinct i, j, k ∈ N and distinct a, b ∈ H such that

i �a j �a k �b i.10 � is Ergin-acyclic if there does not exist any Ergin-cycle.

Theorem 1 (Ergin, 2002) Consider the problem {N ,H ,�}. Assume �a is antisymmetric for any

a ∈H , then the following are equivalent:

(i) DA is efficient,

(ii) DA is group strategy-proof,

(iii) � is Ergin-acyclic.

Since DA is "agent-optimal stable", it follows directly from Theorem 1 that in the case of

strict priorities, Ergin-acyclicity characterizes the priority structures under which a stable and

efficient assignment always exists, as well as the priority structures under which a stable, effi-

cient and group strategy-proof rule exists.

3 The existence of a stable and efficient rule

We first consider the following motivating example from Ehlers and Erdil (2010), which

illustrates the tension between efficiency and respecting (weak) priorities.

Example 1 (Ehlers and Erdil, 2010) Suppose there are two houses a, b and three agents i, j, k.

The priority structure and preference profile are given as follows:

�a �b

i, j k

k i, j

Ri R j Rk

b b a

a a b

i j k

where i and j are ranked equally for both a and b. It can be easily shown that in this case

stability induces efficiency loss. Consider any stable assignment µ. We first observe that if

µ(k) = a, then one of i and j’s priority for a is violated by k. So µ(k) 6= a. Second, we must

have µ(k) = b, because otherwise either b is wasted or k ’s priority for b is violated. Finally, a

will be assigned to either i or j by nonwastefulness. Suppose µ(i) = a. Then clearly there can

be a Pareto improvement exchange between i and k, but such an exchange is “blocked” by j.

Hence, there does not exist a stable and efficient assignment.

10The scarcity condition in the original definition is omitted here since it is always satisfied in our one-to-one
setting.
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The priority structure in Example 1 satisfies Ergin-acyclicity, thus a stronger restriction on

the priorities is required to ensure that the stability constraints do not induce any welfare loss.

In fact, this example is representative: efficiency and stability are compatible if and only if there

does not exist such a form of priority relation.

Definition 2 A priority reversal consists of distinct i, j, k ∈ N and distinct a, b ∈H such that

{i, j} �a k �b {i, j}. � satisfies non-reversal if there does not exist any priority reversal.

Note that non-reversal implies Ergin-acyclicity. Suppose there is an Ergin-cycle i �a j �a

k �b i, then consider j ’s priority for b. If j �b k, then { j, k} �b i �a { j, k}. If k �b j, then

{i, j} �a k �b {i, j}. Therefore, there exists a priority reversal.

As given in the proof of Theorem 2, a simple variant of Example 1 implies that non-reversal

is necessary for the compatibility of efficiency and stability. In the remainder of this section, we

focus on constructing a family of stable and efficient rules when the priority structure satisfies

non-reversal. The basic strategy is to decompose the allocation problem into a sequence of

smaller and easier subproblems. When a subset of agents has higher priorities than anyone

outside this subset for all the houses, we can allocate houses to this subset first without violating

priorities of the other agents. After a stable and efficient assignment is chosen for these agents,

they leave the problem, and the process can be repeated for the reduced problem iteratively.

We first define such a set of agents, for any subproblem. Given
�

N , H,�N ,H

	

∈ P , for any

i, j ∈ N , denote i ��H j if i �a j for all a ∈ H and i �b j for some b ∈ H.

Definition 3 A nonempty set S ⊆ N is a priority set for
�

N , H,�N ,H

	

∈ P if i ��H j for any

i ∈ S, j ∈ N \ S.

Lemma 2 For any
�

N , H,�N ,H

	

∈ P , there exists at least one priority set, and if S1 and S2 are

two priority sets, S1 ∩ S2 is a priority set.

Since the problem is finite, Lemma 2 implies that, by taking the intersection of all the

priority sets, we can find a unique priority set with the smallest number of agents.

Definition 4 A is the smallest priority set for
�

N , H,�N ,H

	

∈ P if A is a priority set, and for

any priority set S for
�

N , H,�N ,H

	

, A ⊆ S.
�

N , H,�N ,H

	

∈ P is minimal if N is the smallest

priority set for
�

N , H,�N ,H

	

.

LetP m be the set of minimal subproblems of {N ,H ,�}. If A is the smallest priority set for

{N ,H ,�}, then
�

A,H ,�A,H
	

∈ P m, and we can focus on allocation in this subproblem first.
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Non-reversal imposes strong restrictions on the structure of a minimal subproblem, which can

only take one of three possible forms: each house ranks all the agents equally, every agent has

some house that only ranks her at the top, and every agent has some house that only ranks her

at the bottom. For any
�

N , H,�N ,H

	

∈ P m, define IN ,H = {a ∈ H : i ∼a j, ∀i, j ∈ N}.

Lemma 3 � satisfies non-reversal if and only if any
�

N , H,�N ,H

	

∈ P m satisfies one of the

following three types of structures:

(i) (House allocation) H = IN ,H ;

(ii) (Housing market) |N |¾ 2. For each i ∈ N, there exists nonemptyU (i) ⊆ H such that for any

a ∈ U (i), i �a N \ {i}, and j ∼a k for all j, k ∈ N \ {i}. Moreover, H = IN ,H ∪ {∪i∈NU (i)};
(iii) (Indifference at the top, or IT) |N |¾ 3. For each i ∈ N , there exists nonempty D(i) ⊆ H such

that for any a ∈ D(i), N \ {i} �a i, and j ∼a k for all j, k ∈ N \ {i}. Moreover, H =

IN ,H∪{∪i∈ND(i)}.11

Denote the set of minimal subproblems satisfying these three types of structures asP HA,P HM

and P I T , respectively. We first introduce a general queue allocation procedure that general-

izes the you request my house-I get your turn (YRMH-IGYT) algorithm, which was proposed as a

solution for the problem of house allocation with existing tenants (Abdulkadiroğlu and Sönmez,

1999, Sönmez and Ünver, 2005), then discuss the mechanics and interpretations of such a pro-

cedure for each type of structures. Given
�

N , H,�N ,H

	

∈ P HA∪P HM ∪P I T and an ordering

σ of agents (σ : {1,2, ..., |N |} → N , σ is a bijection), a priority-based queue rule, or simply

a queue rule, is defined as follows:

Given a preference profile R ∈ RN
H , let agents be assigned their favorite available houses se-

quentially according to the queue Q = (σ(1),σ(2), ...,σ(|N |)) until some agent σ(k) demands

some house a, for which she is ranked lower than at least one unassigned agent. At this point,

the queue Q′ = (σ(k),σ(k + 1), ...,σ(|N |)) is updated by moving those agents in this queue

who are ranked higher than σ(k) for a to the top of Q′, and those moved up agents keep their

relative positions the same as in Q′. Then the agents are assigned sequentially according to the

updated queue. Generally, whenever an agent demands a house for which she is ranked lower

than some unassigned agent, the queue is updated accordingly. If at some point, there is a loop

of queues (Q1,Q2, ...,Qn,Q1), i.e., after some n rounds of updating, a queue (Q1) is updated

11The cardinality conditions in (ii) and (iii) guarantee that a minimal subproblem can satisfy at most one type
of structures. Without these conditions, any minimal subproblem with one agent satisfies all the three types, and a
minimal subproblem with two agents could satisfy both (ii) and (iii).
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back to its original form, then let all the agents contributing to the loop (the agents who are

moved up at least once in this loop of queues) be assigned their favorite available houses, and

proceed with the reduced queue from Q1.

Denote the resulting assignment from this procedure as q(σ, R). First, a minimal subprob-

lem with a house allocation structure is exactly a house allocation problem (Hylland and Zeck-

hauser, 1979). All the agents are ranked equally by any house, and priorities cannot be violated.

In this case, a queue rule is reduced to a serial dictatorship, which is trivially stable. Moreover,

any serial dictatorship is efficient and group strategy-proof (Svensson, 1994, Svensson, 1999).

Before discussing the other two types of structures, we provide a simple example for each of

them.

Example 2 N = {i, j, k, l} ⊆ N , H = {a, b, c, d, e, f , g, h} ⊆ H .
�

N , H,�N ,H

	

with a housing market structure:

�a |N �b |N �c |N �d |N �e |N � f |N �g |N �h |N
i j k l i, j, k, l i, j, k, l i l

j, k, l i, k, l i, j, l i, j, k j, k, l i, j, k

where U (i) = {a, g} ,U ( j) = {b} ,U (k) = {c} ,U (l) = {d, h}, IN ,H = {e, f }.
�

N , H,�N ,H

	

with an IT structure:

�a |N �b |N �c |N �d |N �e |N � f |N �g |N �h |N
i, j, k, l j, k, l i, k, l i, j, l i, j, k i, j, l i, j, l i, j, k, l

i j k l k k

where D(i) = {b} ,D( j) = {c} ,D(k) = {d, f , g} ,D(l) = {e}, IN ,H = {a, h}.

A housing market structure has features of both a housing market problem (Shapley and

Scarf, 1974) and a problem of house allocation with existing tenants, since each agent i can

be considered to have an initial endowment set U (i), but there could also be a set of vacant

houses IN ,H .12 When there are equal numbers of agents and houses, a housing market structure

is exactly a housing market problem. For housing market structures, a queue rule is reduced to

the YRMH-IGYT algorithm: a queue is updated only if some agent requests a house owned by

12The only technical difference from the standard house allocation with existing tenants is that, in a housing
market structure, an agent could be the existing tenant of multiple houses.
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another unassigned agent, and the latter agent will be moved to the top of the queue, getting

the turn of the former agent. Moreover, any loop of queues (Q1,Q2, ...,Qn,Q1) generates a

trading cycle: the agent at the top of each queue is assigned the house owned by the agent at

the top of the next queue in the loop. In fact, given
�

N , H,�N ,H

	

∈ P HM , a queue rule can be

interpreted as the following top trading cycle mechanism (TTC):

Step 1. Given R ∈ RN
H and an orderingσ, denote t1 = σ(1). Let agent i’s initial endowment

be E1
i = U (i) if i 6= t1, and E1

t1
= U (t1) ∪ IN ,H . Let agents start top trading cycle exchanges

with respect to E1. Specifically, each agent points to the owner of her favorite house (an agent

points to herself if all the available houses are not acceptable). There exists at least one cycle

since N is finite. Let the set of agents in some cycle be A1. Then each agent i in A1 is assigned

her favorite house (or herself), µ(i), and leaves the problem with her assignment.

Step k. In general, at the kth step, let tk be the agent with the highest order among

N \ ∪k−1
n=1An (according to σ). Ek

tk
= Ek−1

tk
∪
�

∪i∈Ak−1

�

Ek−1
i \ {µ(i)}

		

, i.e., tk inherits all the

unassigned endowments of those agents in Ak−1; Ek
i = Ek−1

i for i ∈ N \ ∪k−1
n=1An and i 6= tk.

Then the currently unassigned agents start top trading cycle exchanges with respect to Ek.

Each agent points to the owner of her best available house (or herself). Let the set of agents

in some cycle be Ak. Each agent i in Ak is assigned her best available house (or herself), µ(i),

and leaves the problem.

The algorithm terminates when all the agents are assigned, then f T T C(σ, R) = µ.

Results from Abdulkadiroğlu and Sönmez (1999) can be applied to show that, given any σ

and R ∈ RN
H , q(σ, R) = f T T C(σ, R). TTC belongs to the family of hierarchical exchange rules of

Pápai (2000), which are efficient and group strategy-proof.13 It is also stable since each agent

i is guaranteed to obtain a house weakly better than any house in her initial endowment set

U (i).
Finally, we consider IT structures. In this context, due to the feature of "indifference at the

top", if a queue is updated, then it must be the case that some agent i demands a house in D(i),
and all the other unassigned agents are moved to the top of the queue, or equivalently, agent i

is moved to the bottom of the queue. A loop forms at some point of the queue allocation only

if each remaining agent demands a house in her D set, thus there are no conflicting interests

and all the remaining agents can be assigned their favorite available houses simultaneously.

Specifically, the canonical form of a loop in an IT structure is as follows. Suppose at some

13See Section 5.2 for a detailed discussion of hierarchical exchange rules.
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point the queue is given by (x1, x2, ..., xk) and x1 demands a house in D(x1), so the queue

is updated to (x2, ..., xk, x1). Then x2 demands a house in D(x2), thus the queue is further

updated to (x3, ..., xk, x1, x2). After k rounds of such updating, we are back to the original

queue (x1, x2, ..., xk). Queue rules characterize the set of stable and efficient assignments for

an IT structure subproblem, and such a result will be convenient for the proof of impossibility

results concerning (group) strategy-proofness in the next section.

Lemma 4 Given
�

N , H,�N ,H

	

∈ P I T , q(σ, ·) is stable and efficient for any σ. Moreover, for any

R ∈ RN
H , if µ is stable and efficient, there exists σ such that q(σ, R) = µ.

So far it has been shown that queue rules are stable and efficient for any minimal sub-

problem when non-reversal is satisfied. Given the problem {N ,H ,�}, where � satisfies non-

reversal, an ordering of agents σ and a preference profile R ∈ RNH , we define the priority set

rule f � by iteratively implementing queue rules:

Step 1. Find the smallest priority set N1 for {N ,H ,�}. Apply the queue rule to the minimal

subproblem
�

N1, H1 =H ,�N1,H1

	

.14 The resulting assignment is µ1 : N1→ H1 ∪ N1.

Step k. In general, at the kth step, find the smallest priority set Nk for the reduced problem
¦

N \∪k−1
m=1Nm, Hk =H \∪k−1

m=1µm(Nm),�N \∪k−1
m=1Nm,Hk

©

. Apply the queue rule to the minimal

subproblem
�

Nk, Hk,�Nk ,Hk

	

and the resulting assignment is µk : Nk→ Hk ∪ Nk.

The process terminates when every agent is assigned, which takes at most |N | steps. Then,

f �i (σ, R) = µk(i) if i ∈ Nk.

The iterative procedure of finding the smallest priority set and then applying the stable and

efficient queue rule preserves stability and efficiency for the whole allocation problem:

Proposition 1 Suppose � satisfies non-reversal. f �(σ, ·) is stable and efficient for any σ.

Therefore, we have finished the sufficiency part of the first characterization result.

Theorem 2 Consider the problem {N ,H ,�}. There exists a stable and efficient rule if and only

if � satisfies non-reversal.

14At each step, the queue rule is implemented with respect to the restriction of σ and R to the subproblem.
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4 Incentive compatibility

While both serial dictatorships and TTC are group strategy-proof, it can be readily seen

that agents may be able to manipulate a queue rule in an IT structure, thus priority set rules

are generally not strategy-proof. Consider an IT structure with three agents {1,2, 3} and three

houses {a, b, c}, where a ∈ D(1), b ∈ D(2), c ∈ D(3). The preferences are given by aR1 bR11,

bR2aR22, aR33. If σ(i) = i, then q2(σ, R) = 2. However, agent 2 can get house a by asserting

that it is her first choice.

Unfortunately, as shown in the proof of Theorem 3, for any IT structure with more than

three agents, although a stable and efficient assignment always exists, there is no strategy-

proof rule to select such an assignment. However, for the case of three agents,15 DA with

a preference-based tiebreaking rule from Ehlers (2007) is stable, efficient and weakly group

strategy-proof. Thus, priority set rules can be modified to include such a DA algorithm as the

solution to IT structures with three agents instead of queue rules, and such modified priority

set rules are weakly group strategy-proof on a smaller priority domain than the non-reversal

one.

Theorem 3 Consider the problem {N ,H ,�}. The following are equivalent:

(i) there exists a stable, efficient and strategy-proof rule,

(ii) there exists a stable, efficient and weakly group strategy-proof rule,16

(iii) P m =P HA∪P HM ∪
��

N , H,�N ,H

	

∈ P I T : |N |= 3
	

.

Finally, we consider the stronger notion of group strategy-proofness. For the special three-

agent and three-house IT case, DA with the preference-based tiebreaking is also group strategy-

proof (Ehlers, 2007).17 As shown in the proof of Theorem 4, another impossibility result is

that, for any IT structure with more than three houses, there does not exist a stable, efficient

and group strategy-proof rule, suggesting that the “maximal domain” of priority structures is

shrinking further. If some
�

N , H,�N ,H

	

∈ P I T 6= φ, then
�

N ,H ,�N ,H
	

is also minimal, and

non-reversal implies
�

N ,H ,�N ,H
	

∈ P I T . Hence, if |H | > 3, IT structures are eliminated

from any solvable problem when group strategy-proofness is required.

15Recall that an IT structure consists of at least three agents and three houses.
16I thank Lars Ehlers for pointing out that (ii) is equivalent to (i).
17It can be shown that, in this case, such DA algorithms are the only stable, efficient and group strategy-proof

rules. Moreover, it can be easily seen that, when |H| < 4, non-reversal is necessary and sufficient for the existence
of a stable, efficient and group strategy-proof rule.
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Definition 5 A weak priority reversal consists of distinct i, j, k ∈ N and some a, b, c ∈ H
such that {i, j} �a k, k �b i, and k �c j. � satisfies strong non-reversal if there does not exist

any weak priority reversal.

Given a weak priority reversal {i, j} �a k, k �b i, k �c j, it is reduced to a priority re-

versal if b = c, so strong non-reversal implies non-reversal. Strong non-reversal rules out IT

structures and implies that any minimal subproblem is either a house allocation structure or

a housing market structure. In light of Lemma 1, the group strategy-proofness of priority set

rules for a strong non-reversal problem follows directly from the group strategy-proofness of

serial dictatorships and TTC.

Theorem 4 Consider the problem {N ,H ,�}. Suppose |H |> 3, the following are equivalent:

(i) there exists a stable, efficient and group strategy-proof rule,

(ii) P m =P HA∪P HM ,

(iii) � satisfies strong non-reversal.

While house allocation problems and housing markets are two classic families of assign-

ment problems that admit a stable, efficient and group strategy-proof rule, Theorem 4 implies

that a partial converse is also true: given any priority-augmented allocation problem (with

more than three houses), such a rule exists only if it can be decomposed as a sequence of

subproblems defined by the smallest priority sets, and each subproblem has either a house al-

location structure or a housing market structure. A housing market structure is not exactly a

housing market problem which features equal numbers of houses and agents. The following

corollary reinterprets Theorem 4 and provides a closer connection to these two classic families

of problems.

Corollary 1 Consider the problem {N ,H ,�}. Suppose |H | > 3, there exists a stable, efficient

and group strategy-proof rule if and only if any
�

N , H,�N ,H

	

∈ P m with |N | = |H| is either a

house allocation problem or a housing market problem.

Strong restrictions on the priority domain are imposed by the full compatibility of stability

and efficiency, or stability, efficiency and (group) strategy-proofness, but allowing for weak

priorities in the model does yield a much richer set of solvable problems. Define the rank of

agent i at house a as ri(a) = |{ j ∈ N : j �a i}|+1. Then under strict priorities, Ergin-acyclicity

is equivalent to the condition that an agent’s ranks at any two houses can differ at most by
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one (Theorem 2, Ergin (2002)), i.e., |ri(a)− ri(b)| ≤ 1, for any i ∈ N and a, b ∈ H . This

condition implies that an Ergin-acyclic (and strict) priority structure is almost homogenous: all

the agents are partitioned into several groups N1, N2, ..., Nk, with N1 �H N2 �H ... �H Nk,

and each group has at most two agents. However, under weak priorities, various combinations

of minimal subproblems with different structures yield a larger set of admissible problems.

Moreover, even strong non-reversal does not impose any bound on the agents’ rank differences

across houses.18 The enlarged set of solvable problems is not only because we are considering

a larger class of priority structures, but also due to the fact that the stability constraints are less

demanding under coarse priorities.

5 Discussion

5.1 Relationship with other acyclicity conditions

We briefly discuss several acyclicity conditions proposed for the case of strict priorities

first. Kesten (2006) shows that TTC is stable if and only if � is Kesten-acyclic: there does not

exist i, j, k ∈ N and a, b ∈ H such that i �a j �a k �b {i, j}. Kumano (2013) shows that

the Boston Mechanism is stable or strategy-proof if and only if � is Kumano-acyclic: there does

not exist distinct i, j, k ∈ N and a, b ∈ H such that i �a j �b k. Let 7→ denote the "implies

but not implied by" relation, then it is easy to see the following: Kumano-acyclicity 7→ strong

non-reversal 7→ non-reversal 7→ Ergin-acyclicity 7→ Kesten-acyclicity.19

Ehlers and Erdil (2010) also generalize the results of Ergin (2002) to the case of weak

priorities, but from the perspective that DA is the constrained efficient rule under strict pri-

orities. Constrained efficient assignment is generally not unique when ties are allowed, and

they show that the constrained efficient correspondence is efficient if and only if the priority

structure is EE-acyclic: there are no distinct i, j, k ∈ N and a, b ∈H such that i �a j �a k �b i.

EE-acyclicity is logically unrelated to Kumano-acyclicity but more stringent than strong non-

reversal. Therefore, for some priority structure that fails to satisfy EE-acyclicity, not every con-

strained efficient assignment is efficient, but there could exist some systematic efficient (and

group strategy-proof) selection from the set of constrained efficient assignments.

18Rank differences under a strong non-reversal priority structure can be as large as possible. One example is that
there are only two houses, house a ranks all the agents equally, and house b ranks all the agents strictly. Then for
the agent ranked lowest by b, her rank difference between the two houses is |N | − 1.

19We are comparing these conditions under weak priorities environment. When priorities are strict, both strong
non-reversal and non-reversal are reduced to Ergin-acyclicity, and Kumano (2013) provides an excellent comparison
of various acyclicity conditions under strict priorities.
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Finally, Ehlers and Westkamp (2011) consider the same allocation problem and provide a

partial characterization of the priority structures for which there exists a strategy-proof con-

strained efficient rule. Such a rule exists if a stable, efficient and strategy-proof rule exists,

thus there should be a larger set of admissible priority structures than those specified in The-

orem 3. They provide three necessary conditions, and the first is an acyclicity condition. A tie

i1 ∼a i2 between two distinct agents i1, i2 is cyclic, if there exist agents j1, j2 ∈ N \ {i1, i2}, and

houses b1, b2 such that either i1 �b1
j1 �a i1 and i2 �b2

j2 �a i2, with b1 = b2 if j1 = j2, or

{i1, i2} �b1
j1 �b2

j2 �a i1. � is EW-acyclic if it does not contain a cyclic tie. This new notion

helps to establish a characterization of non-reversal:

Proposition 2 � satisfies non-reversal if and only if it is Ergin-acyclic and EW-acyclic.

Therefore, for those priority structures that satisfy Ergin-acyclicity but not non-reversal,

there does not exist a stable and efficient rule, nor do they admit a strategy-proof constrained

efficient rule.

5.2 Priority set rules and hierarchical exchange rules

Hierarchical exchange rules of Pápai (2000) generalize Gale’s top trading cycle algorithm

by allowing endowment sets to be determined hierarchically by inheritance trees. For each

house a ∈H , an inheritance tree Γa = (V,Q) is a rooted tree, where V is the set of vertices, and

Q ⊂ V×V is the set of arcs. Each vertex is labeled by an agent, and each arc is labeled by a house

other than a.20 Γa specifies how a is inherited, and the inheritance can endogenously depend

on the previous assignments. Given a list of inheritance trees Γ = (Γa)a∈H , the associated

hierarchical exchange rule f Γ determines the allocation through top trading cycles at each

stage, according to the endowment sets specified by Γ .21 A rule is efficient, group strategy-

proof and reallocation-proof if and only if it is a hierarchical exchange rule.22

When the priority structure satisfies strong non-reversal, it can be easily seen that a priority

set rule is a hierarchical exchange rule: given the non-reversal � and an ordering σ, there

exists a corresponding Γ such that f �(σ, ·) = f Γ . We briefly discuss the construction of such

inheritance trees. Consider any a ∈ H . Suppose A is the smallest priority set for {N ,H ,�}.
20For simplicity we assume all the houses are acceptable to each agent.
21We refer to Pápai (2000) for the formal definition of hierarchical exchange rules.
22In a recent work, Pycia and Ünver (forthcoming) introduce a more general class of rules called trading cycles,

which are the only efficient and group strategy-proof rules.
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First, a is given to its top priority agent in
�

A,H ,�A,H
	

as initial endowment, i.e., a is given

to i ∈ A if
�

A,H ,�A,H
	

∈ P HM and a ∈U (i), or, a ∈ IA,H and i has the highest order among

A. The inheritance of a is then restricted to the smallest priority set A and follows the ordering

σ.23 It can be easily seen that a hierarchical exchange rule associated with such inheritance

trees is equivalent to f �(σ, ·) for the subproblem
�

A,H ,�A,H
	

. The key part of constructing

an equivalent hierarchical exchange rule for the whole problem utilizes the fact that the inher-

itance of a house can depend on the previous agents’ assignments. Suppose j is the agent with

the lowest order among A. Then given any inheritance path from the top priority agent to j,

and any possible assignment (other than a) of j, a complete “history” of assignments for A is

also known. Therefore, conditional on any possible assignment µ for A, a /∈ µ(A), we can find

the smallest priority set A′ for the reduced problem
�

N \ A,H \µ(A),�N \A,H \µ(A)
	

, and let a

be inherited from j to the top priority agent of a in
�

A′,H \µ(A),�A′,H \µ(A)
	

. The inheritance

then follows σ again, within A′, and by repeating this procedure an equivalent hierarchical

exchange rule is obtained. The following simple example illustrates this construction method.

Example 3 N = {i, j, k, l},H = {a, b, c, d}. Consider the following strong non-reversal prior-

ity structure �:

�a �b �c �d

i, j, k, l i j i, j, k

j i, l l

l k

k

Let (σ(1),σ(2),σ(3),σ(4)) = (i, j, k, l). Then given σ, there exist inheritance trees Γ corre-

sponding to �, such that f �(σ, ·) = f Γ . Γa is given as follows.

23Specifically, suppose i is the top priority agent of a, then list the set of agents A\{i} as x1, x2, ..., x|A|−1 according
to σ. If i is assigned some house other than a, then a is inherited to x1. Generally, if xk is assigned some house
other than a, then a is inherited to xk+1, k = 1,2, ..., |A| − 2.
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The smallest priority set for {N ,H ,�} is A = {i, j}, and i is the top priority agent of a. The

inheritance of a then follows σ within A: a is inherited to j when i is assigned a house other

than a. Then the inheritance from j depends on the assignment of A. For instance, if i and

j are assigned b and c, respectively, then the smallest priority set for the reduced problem
�

N = {k, l} , H = {a, d} ,�N ,H

	

is A′ = {k}, hence a is inherited from j to k.

Since any hierarchical exchange rule is efficient and group strategy-proof, it follows that

there exists a stable hierarchical exchange rule for the problem {N ,H ,�}, |H | > 3, if and

only if � satisfies strong non-reversal. Although Pápai (2000) does not formally include pri-

orities in her model, hierarchical exchange rules are introduced as a broader class of solutions

that are more flexible and less discriminating compared to serial dictatorships, and they can

accommodate some exogenous priorities or property rights by specifying proper inheritance

trees. Our result shows formally which exogenous priority structures can be respected in the

sense of stability. While serial dictatorships and Gale’s top trading cycle are two extreme cases

of hierarchical exchange rules, a stable hierarchical exchange rule exists only if the problem

can be decomposed into a sequence of subproblems such that for each subproblem, one of the

two extremes can be applied.

6 Conclusion

We have considered a generalized house allocation model and searched for solvable prob-

lems in terms of stability and efficiency. When group strategy-proofness is further required,

solvable problems feature a decomposition into two extensively studied families of allocation
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problems: one with social endowments and one with private endowments. An interesting and

challenging question for future study would be to generalize the results to the case of many-to-

one matching. One difficulty imposed by weak priorities is that it is not clear what kind of rule

can select a stable and efficient assignment for solvable problems, but in light of our results as

well as Pycia and Ünver (forthcoming), it is reasonable to conjecture that such a rule involves

some top trading cycle procedure if group strategy-proofness is required. When multiple copies

of each object are allowed, and resources are thus less scarce, more priority structures become

admissible. While similar characterizations of the priority domain could be established, the set

of problems that admit a stable, efficient and group strategy-proof rule will generally not be

restricted to combinations of house allocation and housing market problems.

Appendix A

Proof of Lemma 2. Given
�

N , H,�N ,H

	

∈ P , by definition N is a priority set. For any two

priority sets S1 and S2, we have S1∩S2 6= φ, since otherwise there exist some i ∈ S1, j ∈ S2 such

that i ��H j and j ��H i, contradiction. S1 ∩ S2 is a priority set if S1 ∩ S2 = N . If S1 ∩ S2 6= N ,

then for any k ∈ S1 ∩ S2 and l ∈ N \ {S1 ∩ S2}, we have l ∈ N \ S1 or l ∈ N \ S2, so k ��H l.

Thus S1 ∩ S2 is a priority set. �

Proof of Lemma 3. “if” part. Suppose there exists a priority reversal, i.e., there exist dis-

tinct i, j, k ∈ N and distinct a, b ∈ H such that {i, j} �a k �b {i, j}. Then the subproblem
�

N = {i, j, k} , H = {a, b} ,�N ,H

	

is minimal, but it does not satisfy any of the three types of

structures.

“only if” part. Suppose � satisfies non-reversal and
�

N , H,�N ,H

	

∈ P m. We first show the

following two claims.

Claim 1 (i) There are no i, j ∈ N such that i ��H j, and (ii) there are no a ∈ H and i, j, k ∈ N

such that i �a j �a k.

Proof of Claim 1. Part (i). Assume to the contrary, there exist agents i, j ∈ N such that i ��H j.

Let Gi = {k ∈ N : k ��H j} , G j = N \ Gi , then i ∈ Gi , j ∈ G j . Given any l ∈ G j , either l ∼ H j

or there exists some a ∈ H such that j �a l. If l ∼ H j, then k ��H l for all k ∈ Gi . If there

exists some a ∈ H such that j �a l, then there does not exist any k ∈ Gi and b ∈ H \ {a} such

that l �b k, since otherwise we have l �b {k, j} and {k, j} �a l, which is a priority reversal. So
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Gi �H l and Gi �a l, thus k ��H l for all k ∈ Gi . This shows that k ��H k′, for any k ∈ Gi

and k′ ∈ G j . Hence Gi is a strictly smaller priority set than N , contradicting to
�

N , H,�N ,H

	

being minimal. Part (ii) follows immediately: if there exist a ∈ H and i, j, k ∈ N such that

i �a j �a k, then by Ergin-acyclicity (recall that Ergin-acyclicity is implied by non-reversal),

i ��H k, contradicting to part (i). �

For any a ∈ H, if a /∈ IN ,H , then by (ii) of Claim 1 we can partition N into two disjoint

nonempty subsets A1
a, A2

a, such that A1
a ∪A2

a = N , A1
a �a A2

a and i ∼a j for any i, j ∈ An
a, n= 1,2.

Claim 2 For any a ∈ H \ IN ,H , we cannot have
�

�A1
a

�

�¾ 2 and
�

�A2
a

�

�¾ 2.

Proof of Claim 2. Assume to the contrary,
�

�A1
a

�

� ¾ 2 and
�

�A2
a

�

� ¾ 2 for some a ∈ H \ IN ,H . Then

without loss of generality, let {i1, i2} ⊆ A1
a,
�

i3, i4
	

⊆ A2
a. By (i) of Claim 1 we cannot have

i1 ��H i3, so there exists b ∈ H such that i3 �b i1, thus i3 ∈ A1
b, i1 ∈ A2

b. Then non-reversal

implies i2 ∈ A1
b, i4 ∈ A2

b. Since i2 �{a,b} i4, by (i) of Claim 1, there exists c ∈ H such that

i4 �c i2, so i4 ∈ A1
c , i2 ∈ A2

c . Then since {i1, i2} �a i4, non-reversal implies i1 ∈ A1
c . Hence, we

have
�

i1, i4
	

�c i2 �b

�

i1, i4
	

, which is a priority reversal, contradiction. �

For any i ∈ N , define U (i) = {a ∈ H : i �a N \ {i} , j ∼a k,∀ j, k ∈ N \ {i}}, and D(i) =

{a ∈ H : N \ {i} �a i, j ∼a k,∀ j, k ∈ N \ {i}}.
If H = IN ,H , then

�

N , H,�N ,H

	

has a house allocation structure.

If H 6= IN ,H and for some a ∈ H \ IN ,H ,
�

�A1
a

�

�¾ 2, then
�

�A2
a

�

�= 1 by Claim 2. Clearly |N |¾ 3.

Suppose i ∈ A2
a, then a ∈ D(i) 6= φ. For any j ∈ N , j 6= i, by (i) of Claim 1 there exists some b

such that i �b j, thus i ∈ A1
b, j ∈ A2

b. Then non-reversal implies that k ∈ A1
b for any k ∈ N \{i, j}.

Thus b ∈ D( j) 6= φ. It remains to show that H = IN ,H ∪ {∪l∈ND(l)}. Now suppose for some

c ∈ H, c /∈ D(l) for any l ∈ N and c /∈ IN ,H , then A1
c 6= φ,

�

�A2
c

�

� ¾ 2. Let k1 ∈ A1
c , {k2, k3} ⊆ A2

c ,

then {k2, k3} �d k1 �c {k2, k3} for some d ∈ D(k1), which is a priority reversal, contradiction.

Hence
�

N , H,�N ,H

	

has an IT structure.

If H 6= IN ,H and for any a ∈ H \ IN ,H ,
�

�A1
a

�

�= 1, then for each a ∈ H \ IN ,H , a ∈ U (i) for some

i ∈ N . Thus H = IN ,H∪{∪i∈NU (i)}, and |N |¾ 2. It remains to show that U (i) is nonempty for

any i ∈ N to establish the housing market structure. H 6= IN ,H implies that there exists some

k ∈ N with U (k) 6= φ. If for some j,U ( j) = φ, then clearly k ��H j, contradicting to Claim

1. Thus
�

N , H,�N ,H

	

has a housing market structure. �

Proof of Lemma 4. Let
�

N , H,�N ,H

	

∈ P I T . Denote the assignment from the serial dictator-

ship with respect to σ and R ∈ RN
H as f SD(σ, R). We will use the fact that serial dictatorships
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are efficient, and for any R ∈ RN
H and an efficient µ, there exists σ such that f SD(σ, R) = µ

(Svensson, 1994). Given any R ∈ RN
H and σ, by the construction of the queue rule, there

exists σ1 such that f SD(σ1, R) = q(σ, R), so q(σ, R) is efficient, hence individually rational

and nonwasteful. Priorities cannot be violated by the queue rule: for any i, j ∈ N , j �qi(σ,R) i

implies qi(σ, R) ∈ D(i), so either i is assigned after j, or i and j are assigned simultaneously

when a loop forms, thus j does not envy i’s assignment, i.e., q j(σ, R)R jqi(σ, R). Hence q(σ, R)

is stable. On the other hand, given R ∈ RN
H , suppose µ is stable and efficient. Then there

exists σ2 such that f SD(σ2,R) = µ. Let {i : µ(i) /∈ D(i)} = B1, {i : µ(i) ∈ D(i)} = B2. Con-

struct σ3 such that σ−1
3 (i) < σ

−1
3 ( j) if i ∈ B1, j ∈ B2, or i, j ∈ Bk, k = 1, 2, σ−1

2 (i) < σ
−1
2 ( j).

Suppose f SD(σ2, R) 6= f SD(σ3, R), then by the efficiency of serial dictatorships there exist

i, j ∈ N such that f SD
i (σ3, R)Pi f SD

i (σ2, R) and f SD
j (σ2, R) = f SD

i (σ3, R). Thenσ−1
2 ( j)< σ

−1
2 (i),

and the stability of µ implies j ∈ B1. Thus by the construction of σ3,σ−1
3 ( j) < σ

−1
3 (i), so

f SD
j (σ2, R) = f SD

i (σ3, R) implies that f SD
j (σ3, R)Pj f SD

j (σ2, R). Since the problem is finite, con-

tinue in this fashion there exists a sequence (i1, i2, ..., in), where f SD
ik+1
(σ2, R)Pik f SD

ik
(σ2, R) for

k ∈ {1,2, ..., n− 1}, and f SD
i1
(σ2, R)Pin f SD

in
(σ2, R), contradicting to µ being efficient. Hence,

f SD(σ3, R) = f SD(σ2, R) = µ. By the construction of σ3, clearly qi(σ3, R) = f SD
i (σ3, R) for

i ∈ B1. By the stability of f SD(σ3, R), f SD
i (σ3, R)Pi f SD

j (σ3, R) for any i, j ∈ B2, i 6= j, then

f SD
i (σ3, R) is agent i’s favorite house in H \µ(B1) for all i ∈ B2. Thus a loop forms after agents

in B1 are assigned and qi(σ3, R) = f SD
i (σ3, R) for i ∈ B2. Therefore, q(σ3, R) = f SD(σ3, R) =

f SD(σ2, R) = µ. �

Proof of Proposition 1. Suppose � satisfies non-reversal. Given any σ and R ∈ RNH , the effi-

ciency (as well as individual rationality and nonwastefulness) of f �(σ, R) follows directly from

the efficiency of queue rules. At any step k of the iteration, µk is stable for
�

Nk, Hk,�Nk ,Hk

	

.

Suppose for some i, j ∈ N , j � f �i (σ,R) i. Then clearly f �j (σ, R)R j f �i (σ, R) if i, j ∈ Nk for

some k. If i ∈ Ns, j ∈ Nt and s 6= t, then t < s, and the nonwastefulness of µt implies

f �j (σ, R)R j f �i (σ, R). This shows that f �(σ, R) respects the priorities, hence f �(σ, R) is sta-

ble. �

Proof of Theorem 2. “if part” follows directly from Proposition 1.

“only if” part. Suppose there exists a priority reversal {i, j} �a k �b {i, j}. Consider the

following preference profile R:

Ri : b, a, i,

R j : b, a, j,
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Rk : a, b, k,

Rl : l, ∀l ∈ N \ {i, j, k}.

Given any stable assignment µ, µ(l) = l for all l ∈ N \ {i, j, k}. By the same argument in

Example 1, µ(k) = b, and either µ(i) = a or µ( j) = a, so µ is inefficient. Thus there does not

exist a stable and efficient rule. �

Proof of Theorem 3. (ii)⇒ (i) is obvious. (i)⇒ (iii). Suppose there exists a stable, efficient

and strategy-proof rule f , but P m 6=P HA∪P HM ∪
��

N , H,�N ,H

	

∈ P I T : |N |= 3
	

. Then by

Theorem 2 and Lemma 3, there exists some
�

N , H,�N ,H

	

∈ P I T with |N | > 3. It is sufficient

to consider a four-agent and four-house IT subproblem
�

N = {i, j, k, l} , H = {a, b, c, d} ,�N ,H

	

only, since we can restrict attention to the preference profiles in which mRmh for all m /∈
{i, j, k, l} and h ∈ H , and each house in H \ H is unacceptable to the agents in N . Let

a ∈ D(l), b ∈ D(i), c ∈ D( j), d ∈ D(k). Construct the following preferences:

Rl : a, b, c, d, l,

R′l : b, a, c, d, l,

Ri : b, c, a, i,

R j : c, b, d, j,

Rk : d, c, b, a, k,

R′k : c, d, b, a, k.

And consider the following three preference profiles:

R1 = (Rl , Ri , R j , R′k),

R2 = (R′l , Ri , R j , R′k),

R3 = (R′l , Ri , R j , Rk).

For anyσ, (ql(σ, R1), qi(σ, R1), q j(σ, R1), qk(σ, R1)) = (d, a, b, c). By Lemma 4 this is the unique

stable and efficient assignment for R1, so
�

fl(R1), fi(R1), f j(R1), fk(R1)
�

= (d, a, b, c). Then

strategy-proofness requires fl(R2) = d. The stability of f implies f j(R2) 6= c, since otherwise k’s

priority for c is violated. Then fi(R2) 6= b, since otherwise j’s priority for b is violated. Finally, by

efficiency it can be easily seen that f (R1) = f (R2). Now consider R3, again by Lemma 4 there

exists a unique stable and efficient assignment:
�

fl(R3), fi(R3), f j(R3), fk(R3)
�

= (b, c, d, a).

But comparing f (R2) and f (R3), we have fk(R′k, R3
−k)Pk fk(Rk, R3

−k), contradicting to f being

strategy-proof.

(iii)⇒ (ii). It is sufficient to show that there exists a stable, efficient and weakly group strategy-

proof rule for any IT structure with three agents, since we can combine this rule with serial
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dictatorships and TTC to obtain modified priority set rules which obviously also satisfy these

three axioms. Consider any
�

N , H,�N ,H

	

∈ P I T with |N |= 3. Given an ordering σ, define the

following D-tiebreaking rule for DA:

(i) Suppose some house is choosing between two agents i and j with equal priority. If the

third agent k is on the waiting list of (or is applying to) some other house a, then i is rejected if

a ∈ D(i), j is rejected if a ∈ D( j). If a ∈ D(k)∪ IN ,H , or k has already been rejected by all of her

acceptable houses, then break the tie according to σ, e.g., j is rejected when σ−1(i)< σ−1( j).

(ii) If the three agents apply to some a /∈ IN ,H at the same time, then one agent is rejected

based on the strict priority first and let the rejected agent apply to her next choice. Break the

tie between the other two agents according to (i). Similarly, if the three agents apply to some

a ∈ IN ,H at the same time, then one agent is rejected first according to σ and let the rejected

agent apply to her next choice. Break the tie between the other two agents according to (i).

DA with such a tiebreaking rule is denoted as f DA(D)(σ, ·). By construction f DA(D)(σ, ·) is

stable for any σ. Given σ and a preference profile R ∈ RN
H , denote i1q(a)i2 if at some step of

f DA(D), some house a has to choose between i1 and i2, and rejects i2 in favor of i1. By the D -

tiebreaking rule, q-acyclicity is satisfied: we cannot have three agents j1, j2, j3 and two houses

a1, a2 such that j1q(a1) j2q(a2) j3q(a1) j1.24 For any i ∈ N , let ai , bi , ci denote agent i′s top three

choices in H∪{i}. Let N = {i, j, k} and f DA(D)(σ, R) = µ. We first show that µ is efficient and no

single agent has an incentive to misrepresent preferences at the arbitrary preference profile R.

For simplicity we use q(a) to denote the relation defined under R (the true preference profile),

while eq(a) is defined with respect to a manipulated preference profile under consideration.

There are three cases to consider.25

Case 1.
�

�

�

ai , a j , ak

	�

�= 3. Every agent is assigned her top choice, so µ is efficient and no agent

has an incentive to misrepresent her preferences.

Case 2. ai = a j 6= ak. Without loss of generality, suppose iq(ai) j. Then q-acyclicity implies

24If q-acyclicity is violated, then there exists a rejection cycle: a1 rejects j2 in favor of j1, then j2 applies to a2

and a2 rejects j3 in favor of j2, finally j3 applies to a1 and j1 gets rejected. To see that such a rejection cycle does
not exist, i.e., j1q(a1) j2q(a2) j3 implies that we cannot have j3q(a1) j1, consider the following three cases. Case
1: a1 ∈ D( j2). By the D-tiebreaking rule, j2q(a2) j3 implies j2 �a2

j3, thus a2 ∈ D( j3) and it is not possible that
j3q(a1) j1. Case 2: a1 ∈ IN ,H . j2q(a2) j3 implies a2 /∈ D( j2). j1q(a1) j2 implies a2 /∈ D( j1). Thus we have either
a2 ∈ D( j3) or a2 ∈ IN ,H . If a2 ∈ D( j3), then clearly it is not possible that j3q(a1) j1. If a2 ∈ IN ,H , then j1q(a1) j2q(a2) j3
implies σ−1( j1) < σ−1( j2) < σ−1( j3), thus we cannot have j3q(a1) j1. Case 3: a1 ∈ D( j3). Clearly it is not possible
that j3q(a1) j1.

25If for some l ∈ N , al = l, then f DA(D)(σ, R) is obviously efficient, and no agent can manipulate at R. So we
restrict attention to the cases in which al ∈ H for all l in N .
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that we cannot have jq(ak)kq(ai)i, thus µ(i) = ai . Clearly i has no incentive to misrepresent

preferences.

If b j 6= ak, then µ(k) = ak,µ( j) = b j . µ is efficient and only j could potentially manipulate

to obtain her first choice ai . j cannot be assigned ai by applying to any house other than ak in

the first step, or by first applying to ak and getting rejected. If j first applies to ak and jeq(ak)k,

then q-acyclicity implies µ( j) = ak, so such a manipulation strategy cannot be successful.

If b j = ak and kq(ak) j, then µ(k) = ak and µ( j) = c j . µ is efficient. j will always be rejected

by ai and ak for any reported preferences.

If b j = ak and jq(b j)k, then by q-acyclicity µ( j) = b j ,µ(k) /∈
�

ai , b j

	

. µ is efficient. j

cannot obtain ai no matter which house she applies to in the first step. We now consider k’s

incentives. There are only two potentially successful manipulation strategies for k: applying

to a house h /∈
�

ai , b j

	

in the first step to alter the tiebreaking between i and j (so we must

have i ∼ai
j in this situation), and “pooling” with i, j, i.e., applying to ai first. Suppose the

first manipulation strategy is successful, then i ∼ai
j, and jeq(ai)i, ieq(h)k, thus h /∈ D(i) and

σ−1( j) < σ−1(i). Then from iq(ai) j we have b j ∈ D( j), but this contradicts to jq(b j)k. Now

assume that the second manipulation strategy is successful, then k cannot be the first rejected

agent when all the three agents apply to ai first. If i is the first rejected agent, then ai ∈ IN ,H

and σ−1( j) < σ−1(i). So iq(ai) j implies b j ∈ D( j), contradicting to jq(b j)k. If j is the first

rejected agent, then i must be the second rejected agent for such a manipulation strategy to

be successful for k. This implies i ∼ai
k and b j /∈D(k). Then jq(b j)k implies σ−1( j)< σ−1(k)

and ai /∈D( j), contradicting to j being the first rejected agent when all the three agents apply

to ai first.

Case 3. ai = a j = ak. Without loss of generality suppose k is the first rejected agent and j is

the second rejected agent, then µ(i) = ai and at least one of j and k is assigned her second

choice. Clearly µ is efficient. q-acyclicity implies that neither j nor k can obtain ai , regardless

of the reported preferences. Thus we are only left to show that if j or k is assigned her third

choice (so b j = bk), then she cannot manipulate to obtain her second choice. If µ(k) = ck, the

only potentially successful manipulation strategy for k is to apply to some house h /∈ {ai , bk}
to alter the tiebreaking between i and j at ai , but by the same argument in Case 2 such a

strategy cannot be successful. If µ( j) = c j , similarly the only possible manipulation for j is to

apply to some house h 6= ai first such that keq(ai)i. Then it must be the case that ai ∈ IN ,H and

h ∈D(i), then j is assigned h under the manipulated preference profile. If such a manipulation

is successful, i.e., j obtains her second choice, then b j = h ∈D(i), contradicting to iq(ai) j.

It remains to show that f DA(D) is weakly group strategy-proof. Suppose two agents can
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jointly manipulate and become strictly better-off, then it is sufficient to consider the following

three cases: (i) ai = a j 6= ak, b j = ak, iq(ai) j, jq(b j)k; (ii) ai = a j = ak, b j = bk, k is the first

rejected agent, then iq(ai) j, jq(b j)k; (iii) ai = a j = ak, b j = bk, j is the first rejected agent,

then iq(ai)k, jq(b j)k. In each case, µ( j) = b j . It can be easily shown that in order for j to obtain

ai , j must form tie with i at ai , while k applies to some other house h ∈ D(i) to influence the

tiebreaking such that i is rejected. But this would imply that k is assigned h and cannot be

strictly better-off. �

Proof of Theorem 4. (iii) ⇒ (ii) is obvious. (ii) ⇒ (i). Since both serial dictatorships and

TTC are strategy-proof and nonbossy, when P m = P HA ∪ P HM , f �(σ, ·) is strategy-proof

and nonbossy, hence group strategy-proof by Lemma 1. f �(σ, ·) is stable and efficient by

Proposition 1.

(i)⇒ (iii). Suppose there exists a stable, efficient and group strategy-proof rule f . By Theorem

2,� satisfies non-reversal. Assume (iii) is not true, then there exist three distinct agents {1,2, 3}
and three distinct houses {a, b, c} such that {2, 3} �a 1,1 �b 2 and 1 �c 3. Since |H | > 3,

there exists some d /∈ {a, b, c}, and
�

N = {1,2, 3} , H = {a, b, c, d} ,�N ,H

	

is minimal. Then

non-reversal implies
�

N , H,�N ,H

	

∈ P I T , where a ∈ D(1), b ∈ D(2) and c ∈ D(3). It is

sufficient to consider this subproblem only. The following result, from Lemma 1 of Svensson

(1999), will be helpful for our proof. It states that group strategy-proofness implies Maskin

monotonicity.

Claim 3 (Svensson, 1999). Suppose f̄ is a group strategy-proof rule for some
�

N̄ , H̄,�N̄ ,H̄

	

∈ P .

Given any R, R′ ∈ R N̄
H̄

, if for any i ∈ N̄ , a ∈ H̄∪{i} , f̄i(R)Ria implies f̄i(R)R′ia, then f̄ (R) = f̄ (R′).

We consider two possible cases.

Case 1. d ∈ D(i) for some i ∈ {1,2, 3}. Without loss of generality, suppose d ∈ D(3).
Step 1. f (c, d | c, d | d, a) = (d, c, a), f (c, d | c, d | d, b) = (c, d, b).26

By Lemma 4, f (c, d | c, d | d, a) ∈ {(c, d, a), (d, c, a)}. First we want to show f (c, d |
c, d | d, a) = (d, c, a). Again, by Lemma 4, f (a, c, b | c, a | c, a) = (b, c, a), then by Claim 3,

f (c, a, b | c, d | c, a) = (b, c, a). So if f (c, d | c, d | d, a) = (c, d, a), then given the true preference

profile (c, a, b | c, d | c, a), agent 1 and agent 3 can jointly manipulate to (c, d | c, d | d, a) such

26For simplicity, we denote f (R1 : cR1d; R2 : cR2d; R3 : dR3a) as f (c, d | c, d | d, a), and unacceptable houses are
not listed.
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that 1 is strictly better-off while 3 gets the same house. Thus f (c, d | c, d | d, a) = (d, c, a). By

a similar argument, it can be shown that f (c, d | c, d | d, b) = (c, d, b).27

Step 2. f (c, d | c, d | d, a) = (d, c, a) implies f (c, 1 | c, 2 | d, 3) = (1, c, d), and f (c, d | c, d |
d, b) = (c, d, b) implies f (c, 1 | c, 2 | d, 3) = (c, 2, d). Hence, such a stable, efficient and group

strategy-proof rule f does not exist.

Given f (c, d | c, d | d, a) = (d, c, a), strategy-proofness and efficiency imply f (c, 1 | c, d |
d, a) = (1, c, d). Then by Claim 3, f (c, 1 | c, 2 | d, 3) = (1, c, d). Similarly, f (c, d | c, d | d, b) =

(c, d, b)⇒ f (c, d | c, 2 | d, b) = (c, 2, d)⇒ f (c, 1 | c, 2 | d, 3) = (c, 2, d).

Case 2. d ∈ IN ,H , i.e., 1∼d 2∼d 3.

Step 1. f (d, a, b | d, a | d, a) ∈ {(b, d, a), (b, a, d)} .
By Lemma 4, f (a, d, b | d, a | d, a) ∈ {(b, d, a), (b, a, d)}, then Claim 3 implies f (d, a, b |

d, a | d, a) ∈ {(b, d, a), (b, a, d)}.
Step 2. f (d, a, b | d, a | d, a) = (b, d, a) implies f (d, b | d, b, a | d, b) = (d, a, b).

By Claim 3, f (d, a, b | d, a | d, a) = (b, d, a) implies f (d, b, a | d, b, a | d, a, b) = (b, d, a),

then strategy-proofness implies f3(d, b, a | d, b, a | d, b, a) 6= d. By Lemma 4, f2(d, b, a | b, d, a |
d, b, a) = a, then f2(d, b, a | d, b, a | d, b, a) = a by strategy-proofness. Combined with

f3(d, b, a | d, b, a | d, b, a) 6= d we have f (d, b, a | d, b, a | d, b, a) = (d, a, b) by efficiency.

It follows that f (d, b | d, b, a | d, b) = (d, a, b).

Step 3. (i) f (d, a, b | d, a | d, a) = (b, d, a) implies f (d, a | d, b | d, c) = (a, d, c); (ii) f (d, b |
d, b, a | d, b) = (d, a, b) implies f (d, a | d, b | d, c) = (d, b, c).

Given f (d, a, b | d, a | d, a) = (b, d, a), by Claim 3, f (d, a, b | d, c | d, a) = (b, d, a), then

f3(d, a, b | d, c | d, c, a) ∈ {c, a} by strategy-proofness. If f3(d, a, b | d, c | d, c, a) = a, then

nonbossiness implies f (d, a, b | d, c | d, c, a) = (b, d, a), so c is wasted. Thus f3(d, a, b | d, c |
d, c, a) = c. Since 2 �c 3, stability implies f2(d, a, b | d, c | d, c, a) = d. So we have f (d, a, b |
d, c | d, c, a) = (a, d, c), then by Claim 3, f (d, a | d, b | d, c) = (a, d, c).

f (d, b | d, b, a | d, b) = (d, a, b) implies f (d, a | d, b | d, c) = (d, b, c) by a similar argu-

ment.28

Step 4. f (d, a, b | d, a | d, a) = (b, a, d), f (d, b | d, b, c | d, b) = (d, c, b), f (d, c | d, c | d, c, a) =

(c, d, a).29

27Specifically, first, by Lemma 4, f (c, d | c, d | d, b) ∈ {(c, d, b), (d, c, b)} . Again by Lemma 4, f (c, b | b, c, a |
c, b) = (c, a, b), which implies f (c, d | c, b, a | c, b) = (c, a, b) by Claim 3. Then if f (c, d | c, d | d, b) = (d, c, b),
given the true preference profile (c, d | c, b, a | c, b), agent 2 and agent 3 can jointly manipulate.

28Specifically, f (d, b | d, b, a | d, b) = (d, a, b) ⇒ f (d, c | d, b, a | d, b) = (d, a, b) ⇒ f (d, c | d, b, a | d, c, b) =
(d, b, c)⇒ f (d, a | d, b | d, c) = (d, b, c).

29The idea is similar to the preference-based tiebreaking rule in the proof of Theorem 3. When all the agents
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Step 2 and step 3 imply that we cannot have f (d, a, b | d, a | d, a) = (b, d, a). Then by

step 1, f (d, a, b | d, a | d, a) = (b, a, d). By a set of symmetric arguments, it can be shown that

f (d, b | d, b, c | d, b) = (d, c, b), f (d, c | d, c | d, c, a) = (c, d, a).

Step 5. Such a stable, efficient and group strategy-proof rule f does not exist.

Consider the following preference profile R :

R1 : d, b, a,

R2 : d, c, b,

R3 : d, a, c.

By step 4, f (d, c | d, c | d, c, a) = (c, d, a), thus by Claim 3, f (d, c | d, c, b | d, a, c) = (c, d, a).

Then f1(R) 6= d by strategy-proofness. Similarly, f (d, a, b | d, a | d, a) = (b, a, d)⇒ f (d, b, a |
d, a | d, a, c) = (b, a, d)⇒ f2(R) 6= d. And f (d, b | d, b, c | d, b) = (d, c, b)⇒ f (d, b, a | d, c, b |
d, b) = (d, c, b)⇒ f3(R) 6= d. Nonwastefulness is violated, hence such a rule f does not exist.

�

Proof of Corollary 1. “only if” part follows from Theorem 4 and the definition of housing

market structures in Lemma 3.

“if” part. Suppose that any
�

N , H,�N ,H

	

∈ P m with |N | = |H| is either a house alloca-

tion problem or a housing market problem. Assume to the contrary, there does not exist a

stable, efficient and group strategy-proof rule, then by Theorem 4 there exists a weak pri-

ority reversal: {i, j} �a k, k �b i and k �c j. If b = c, pick any h ∈ H \ {a, b}. Then
�

N = {i, j, k} , H = {a, b, h} ,�N ,H

	

∈ P m, but it is not a house allocation problem or a hous-

ing market problem. If b 6= c, then
�

N ′ = {i, j, k} , H ′ = {a, b, c} ,�N ′,H ′
	

∈ P m and it is not a

house allocation problem or a housing market problem either, contradiction. �

Proof of Proposition 2. “if” part. Suppose that there exists a priority reversal {i, j} �a k �b

{i, j}. If i ∼b j, then this is a cyclic tie and � is not EW-acyclic. If i �b j, there is an Ergin-cycle

k �b i �b j �a k. If j �b i, there is an Ergin-cycle k �b j �b i �a k. So � is not Ergin-acyclic

when it is not i ∼b j.

“only if” part. We have shown that non-reversal implies Ergin-acyclicity. Suppose � satisfies

non-reversal, but assume to the contrary there exists a cyclic tie i1 ∼a i2 between two distinct

agents i1, i2. Then there exist j1, j2 ∈ N \{i1, i2} and b1, b2 ∈H such that we have four possible

cases:

have the same first choice d and the same second choice h ∈ {a, b, c} , with h ∈ D(i), then i will be assigned her
third choice. The assignment of d depends on i’s third choice: if i’s third choice is in D( j), j 6= i, then the third
agent k will be assigned d.
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Case 1. j1 6= j2, b1 6= b2 and { j1, j2} �a i1 ∼a i2, i1 �b1
j1, i2 �b2

j2.

Then
�

N = {i1, i2, j1, j2} , H = {a, b1, b2} ,�N ,H

	

∈ P m, contradicting to Lemma 3.

Case 2. j1 6= j2, b1 = b2 and { j1, j2} �a i1 ∼a i2, i1 �b1
j1, i2 �b1

j2. We have j2 �b1
i1, because

otherwise { j1, j2} �a i1 �b1
{ j1, j2}. But then {i1, i2} �b1

j1 �a {i1, i2}, contradiction.

Case 3. j1 = j2, b1 = b2 and j1 �a i1 ∼a i2, {i1, i2} �b1
j1. This is a priority reversal, contradic-

tion.

Case 4. {i1, i2} �b1
j1, j1 �b2

j2, j2 �a i1 ∼a i2. First it can be easily verified that |{a, b1, b2}| =
3, since otherwise there exists an Ergin-cycle. Then

�

N = {i1, i2, j1, j2} , H = {a, b1, b2} ,�N ,H

	

∈
P m, contradicting to Lemma 3. �
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